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Grass snakes (Natrix natrix) represent one of the most widely distributed snake species of
the Palaearctic region, ranging from the North African Maghreb region and the Iberian
Peninsula through most of Europe and western Asia eastward to the region of Lake Baikal
in Central Asia. Within N. natrix, up to 14 distinct subspecies are regarded as valid. In addi-
tion, some authors recognize big-headed grass snakes from western Transcaucasia as a dis-
tinct species, N. megalocephala. Based on phylogenetic analyses of a 1984-bp-long alignment
of mtDNA sequences (ND4+tRNAs, cyt b) of 410 grass snakes, a nearly range-wide phylo-
geography is presented for both species. Within N. natrix, 16 terminal mitochondrial clades
were identified, most of which conflict with morphologically defined subspecies. These 16
clades correspond to three more inclusive clades from (i) the Iberian Peninsula plus North
Africa, (ii) East Europe and Asia and (iii) West Europe including Corso-Sardinia, the Apen-
nine Peninsula and Sicily. Hypotheses regarding glacial refugia and postglacial range expan-
sions are presented. Refugia were most likely located in each of the southern European
peninsulas, Corso-Sardinia, North Africa, Anatolia and the neighbouring Near and Middle
East, where the greatest extant genetic diversity occurs. Multiple distinct microrefugia are
inferred for continental Italy plus Sicily, the Balkan Peninsula, Anatolia and the Near and
Middle East. Holocene range expansions led to the colonization of more northerly regions
and the formation of secondary contact zones. Western Europe was invaded from a refuge
within southern France, while Central Europe was reached by two distinct range expansions
from the Balkan Peninsula. In Central Europe, there are two contact zones of three distinct
mitochondrial clades, and one of these contact zones was theretofore completely unknown.
Another contact zone is hypothesized for Eastern Europe, which was colonized, like north-
western Asia, from the Caucasus region. Further contact zones were identified for southern
Italy, the Balkans and Transcaucasia. In agreement with previous studies using morphologi-
cal characters and allozymes, there is no evidence for the distinctiveness of N. megalocephala.
Therefore, N. megalocephala is synonymized with N. natrix.
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Introduction
While the knowledge of the phylogeography of many
European taxa has made great progress over the past
20 years (Hewitt 1996, 2000, 2011; Taberlet et al. 1998;
Joger et al. 2007; Schmitt 2007; Lymberakis & Poulakakis
2010; Schmitt & Varga 2012), there still remain some
wide-ranging iconic taxa understudied. One of these species
is the grass snake (Natrix natrix). It is one of the most
widely distributed snake species of the Palaearctic region,
ranging from the North African Maghreb region and the
Iberian Peninsula through most of Europe and western
Asia eastward to the region of Lake Baikal in Central Asia
(Bannikov et al. 1977; Kabisch 1999). Grass snakes are
more or less associated with aquatic habitats, but they are
not true water snakes like the related species N. maura and
N. tessellata. Grass snakes usually reach a total length of up
to 120 cm, with maximum sizes of some 200 cm, and feed
on amphibians, fish and small mammals or nestling birds
(Bannikov et al. 1977; Engelmann et al. 1986; Gruber 1989;
Kabisch 1999; Arnold & Ovenden 2002; Kreiner 2007).
Traditionally, many morphologically defined grass snake

subspecies have been distinguished, which differ mainly in
body proportions, colouration and size (Hecht 1930;
Mertens 1947, 1957, 1966; Mertens & Wermuth 1960;
Kramer 1970; Bannikov et al. 1977). However, in a sweep-
ing revision using multivariate statistics, Thorpe (1979)
reduced the number of subspecies to four (Table 1).
Within this four subspecies model, N. n. natrix is distrib-
uted in the east of the species’ range, and N. n. helvetica
occupies most of the western range, except Corsica and
Sardinia. Thorpe (1979) confirmed the earlier view (Mer-
tens & Wermuth 1960) that the two subspecies natrix and
helvetica meet and hybridize in the Rhine region. In addi-
tion to these two subspecies, Thorpe (1979) recognized
only the morphologically highly distinctive grass snakes
from Corsica and Sardinia as further subspecies
(N. n. corsa, N. n. cetti). Nevertheless, other authors contin-

ued to treat up to 14 subspecies as valid (Fig. 1; Table 1;
Nilson & Andr�en 1981; Engelmann et al. 1986; Gruber
1989; Kabisch 1999; Arnold & Ovenden 2002; Kreiner
2007; Baier et al. 2009). Furthermore, two additional spe-
cies, N. cetti (Corsica, Sardinia) and N. megalocephala (wes-
tern Transcaucasia), are sometimes recognized (Orlov &
Tuniyev 1987, 1999; Vanni & Cimmaruta 2010). However,
the validity of N. megalocephala has been repeatedly
doubted (Hille 1997; B€ohme 1999; Jandz�ık 2005; Frotzler
et al. 2011; G€oc�men et al. 2011), and the status of N. c. cetti
and N. c. corsa as subspecies of N. natrix was recently rein-
stated (Fritz et al. 2012).
Until today, there are only few studies tackling genetic

differentiation of grass snakes. In a pioneering study, Hille
(1997) examined some grass snake subspecies and N. mega-
locephala using allozyme data. Although he confirmed an
east–west differentiation within N. natrix and found no evi-
dence for the validity of N. megalocephala, his results were
largely inconclusive. Using mitochondrial DNA sequences
of some 25 specimens, Guicking et al. (2006, 2008a) pro-
vided a first preliminary phylogeography and compared
their findings with morphologically defined subspecies.
Fritz et al. (2012) added to the data set of Guicking et al.
(2006, 2008a) sequences of Corsican, Sardinian and conti-
nental Italian grass snakes and concluded that Corso-Sardi-
nian snakes do not represent a distinct species owing to
their close phylogenetic relationship with N. n. helvetica.
Furthermore, in the light of the observed mtDNA varia-
tion, Guicking et al. (2008a) and Fritz et al. (2012) agreed
that Thorpe’s (1979) four subspecies model evidently
underestimates genetic and taxonomic variation within
N. natrix. However, obvious mismatches between prelimin-
ary mtDNA data and any subspecies delineation also
underscored the need for further investigations using an
expanded sampling to achieve a better understanding of the
phylogeography and taxonomy of grass snakes (Guicking
et al. 2008a; Fritz et al. 2012).
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The present study aims to fulfil this task. Here we use a
nearly range-wide sampling of 410 grass snakes to generate
a comprehensive phylogeography based on two mitochon-
drial markers, the NADH dehydrogenase subunit 4 gene
(ND4) and the cytochrome b gene (cyt b). Our samples
represent all but one of the 14 nominal N. natrix subspe-
cies recognized by some recent authors (Kabisch 1999;
Arnold & Ovenden 2002; Kreiner 2007; Baier et al. 2009)
and N. megalocephala (Table 1), and allow comparing mito-
chondrial differentiation and morphologically defined taxa.
Only the subspecies N. n. fusca, endemic to the island of
Kea, Cyclades, is missing in our sampling.

Materials and methods
Sampling, gene selection and laboratory procedures

Three hundred and eighty tissue, blood and saliva samples
of grass snakes were studied. Besides fresh material, the
samples included tissues from museum specimens that had
been, as a rule, ethanol-preserved for no more than
30 years (Table S1). Two mitochondrial genes were
sequenced that were previously successfully used for phy-
logeographic purposes in Natrix natrix and the allied spe-
cies N. maura and N. tessellata (Guicking et al. 2006, 2008a,
b, 2009; Fritz et al. 2012), viz. the partial ND4 gene and
the cyt b gene. The DNA sequence containing the partial
ND4 gene embraced also the flanking DNA coding for
tRNA-His, tRNA-Ser and tRNA-Leu. The obtained
sequences varied in length between 437 and 696 bp (ND4),
between 0 and 117 bp (adjacent tRNAs), and between 311
and 1117 bp (cyt b). For some samples, sequences of only
one of the two genes could be generated (Table S1), due
to bad DNA quality or small quantity. Remaining samples
and DNA are stored at �80 °C in the tissue collection of
the Museum of Zoology, Senckenberg Dresden.

Total genomic DNA was extracted using either the
DTAB method (Gustincich et al. 1991), the innuPREP
DNA Mini Kit or the innuPREP Blood DNA Mini Kit
(both Analytik Jena AG, Jena, Germany). DNA fragments
were amplified using the primers given in Table S2. When
the primers of Guicking et al. (2006) did not yield PCR
products, newly designed primers were applied to amplify
up to three shorter overlapping PCR products for the
DNA fragment embracing ND4+tRNAs and up to four
PCR products for cyt b. For primer combinations and
PCR conditions, see Table S3.
PCR was carried out in a total volume of 25 lL con-

taining 1 unit Taq polymerase (Bioron, Ludwigshafen,
Germany), 1x buffer as recommended by the supplier,
0.4 lM of each primer (Biomers, Ulm, Germany) and
0.2 mM of each dNTP (Thermo-Scientific, St. Leon-Rot,
Germany). Challenging samples were additionally treated
with 10 lg BSA (Thermo-Scientific). PCR products were
purified using the ExoSAP-IT enzymatic clean-up (USB
Europe GmbH, Staufen, Germany; modified protocol:
30 min at 37 °C, 15 min at 80 °C) and sequenced on an
ABI 3130xl Genetic Analyzer (Applied Biosystems, Foster
City, CA, USA) using the PCR primers and the BigDye
Terminator version 3.1 Cycle Sequencing Kit (Life Tech-
nologies, Darmstadt, Germany). Cycle sequencing reactions
were purified by ethanol/sodium acetate precipitation or
using Sephadex (GE Healthcare, M€unchen, Germany).

Alignment, partitioning and phylogenetic analyses

All sequences were aligned and inspected using BIOEDIT

7.0.9.0 (Hall 1999) and MEGA 5.1 (Tamura et al. 2011).
Thirty homologous GenBank sequences of known-locality
grass snakes corresponding to the data set of Fritz et al.
(2012) were aligned with our newly generated sequences,

Table 1 Morphologically defined taxa
(Natrix natrix subspecies, N. megalocephala)
compared with mitochondrial clades

Thorpe (1979)
Kabisch (1999),
Orlov & Tuniyev (1999) Kreiner (2007)

Mitochondrial clades
(this study)

Natrix natrix natrix Natrix natrix natrix Natrix natrix natrix 3, 4, 8
Natrix natrix natrix Natrix natrix persa Natrix natrix cypriaca 7
Natrix natrix natrix Natrix natrix fusca Natrix natrix fusca ?
Natrix natrix natrix Natrix natrix gotlandica Natrix natrix gotlandica 3, 4
Natrix natrix natrix Natrix natrix persa Natrix natrix persa 1, 2, 3, 4, 5, 7, 8
Natrix natrix natrix Natrix natrix schweizeri Natrix natrix schweizeri 3
Natrix natrix natrix Natrix natrix scutata Natrix natrix scutata 8
Natrix natrix natrix Natrix natrix syriaca Natrix natrix syriaca 6
Natrix natrix helvetica Natrix natrix astreptophora Natrix natrix astreptophora Tu, Eu
Natrix natrix helvetica Natrix natrix helvetica Natrix natrix helvetica 4, C, E
Natrix natrix helvetica Natrix natrix lanzai Natrix natrix lanzai D, F
Natrix natrix helvetica Natrix natrix sicula Natrix natrix sicula A, F
Natrix natrix cetti Natrix natrix cetti Natrix natrix cetti B
Natrix natrix corsa Natrix natrix corsa Natrix natrix corsa B
— Natrix megalocephala — 8

Different names on the same line indicate synonymy of the respective taxa according to the different authors.
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Fig. 1 Distribution of subspecies of Natrix natrix and N. megalocephala (top) and mitochondrial clades (bottom). Hatching along range
borders of N. natrix subspecies indicates putative contact or hybrid zones. Distribution ranges combined from Kabisch (1999), Orlov &
Tuniyev (1999), Kreiner (2007), Baier et al. (2009) and G€oc�men et al. (2011). Inset (bottom): N. natrix from Mtskheta, Georgia
(photograph: M. Auer).
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resulting in a total of 410 sequences. Natrix maura, N. tes-
sellata and the more distantly related North American
water snake Nerodia sipedon were added as outgroups;
N. sipedon was used for tree rooting. GenBank accession
numbers of all sequences are listed in Table S1.
Phylogenetic relationships were inferred for sequences of

all 410 grass snakes (Table S1) using three data sets, that
is, for each mtDNA fragment alone (ND4+tRNAs vs. cyt
b) and for the two fragments concatenated. For the com-
bined analyses and for the mtDNA fragment embracing
the partial ND4 gene plus adjacent DNA coding for
tRNAs, the data were partitioned by gene; the DNA cod-
ing for tRNAs was treated as a single partition. In the
alignment of concatenated sequences (1984 bp total
length), 696 bp corresponded to the partial ND4 gene,
171 bp to the DNA coding for tRNA-His, tRNA-Ser and
tRNA-Leu, and 1117 bp to the cyt b gene. The 867-
bp-long ND4+tRNA sequences contained 175 variable
sites, and the 1117-bp-long cyt b sequences, 270 variable
sites (ingroup sequences only). The best evolutionary
model was determined for each partition using the Akaike
information criterion of MRMODELTEST 2.3 (Nylander
2004), resulting in the GTR+I+G model for ND4 and cyt
b and the HKY+I model for the combined tRNAs. Phylo-
genetic trees were calculated using MRBAYES 3.2.1 (Ronquist
et al. 2012) and the implemented Metropolis-coupled
Markov chain Monte Carlo algorithm. Two parallel runs,
each with one cold and three heated chains, were con-
ducted. The chains ran for 107 generations, with every
100th generation sampled. However, using the default set-
tings of MRBAYES the two runs for cyt b and the concate-
nated data set did not converge on a stationary level.
Therefore, analyses were rerun setting the heating parame-
ter k to 0.05. For generating the final 50% majority rule
consensus, a burn-in of 25% was used to sample only the
most likely trees. In addition, phylogenetic relationships
were inferred using the Maximum Likelihood (ML)
approach as implemented in RAxML 7.2.8 (Stamatakis
2006). Using the GTR+G model across all partitions, five
independent ML searches were run with different starting
conditions and the fast bootstrap algorithm. The robustness
of the branching patterns was examined by comparing the
best trees. Subsequently, 1000 nonparametric thorough
bootstrap replicates were calculated and the values plotted
against the tree with the highest likelihood value. In addi-
tion, uncorrected p distances were computed using MEGA

and the ‘pairwise deletion’ option.

Results
For each data set (ND4+tRNAs and cyt b alone or concate-
nated), there are no significant differences in the topologies
of the Maximum Likelihood and Bayesian trees, and the

trees for the combined data set have completely identical
topologies. Differences between the trees based on each
mtDNA fragment alone and the trees based on the concat-
enated sequence data occur only with respect to the weakly
resolved deeper nodes, while the placement of individual
sequences in terminal clades is consistent. In the trees
based on the combined sequences, some of the more basal
branching patterns are better supported than in the trees
based on ND4+tRNAs and cyt b alone. However, some
deeper nodes remain also then weakly supported (Fig. 2).
In agreement with previous results (Guicking et al. 2006),
Natrix tessellata and N. maura constitute the successive
sister taxa of a well-supported clade corresponding to
N. natrix (Fig. S1). Our three sequences of N. megalocepha-
la are consistently embedded within N. natrix, and there
are 16 major subordinated clades within this paraphyletic
group (clades Tu, Eu, 1–8 and A–F; Fig. 2). With respect
to ND4+tRNAs, uncorrected average p distances among
these 16 clades amount to 0.29–7.29%, while divergences
of 0–0.63% are observed within the clades. For cyt b
sequences, the respective values are 0.28–7.51% and
0–0.62% (Table S4).
The sequences of N. megalocephala cluster in a well-

supported subordinated clade containing also sequences of
N. n. natrix, N. n. persa and N. n. scutata (clade 8 in
Fig. 2). A closer inspection of clade 8 reveals that the aver-
age divergence between the three sequences of N. megalo-
cephala and the 35 sequences of N. natrix subspecies is only
0.26% (ND4+tRNAs and cyt b concatenated). The
sequences of N. megalocephala represent three haplotypes,
and the same haplotypes also occur among the sequences
of N. natrix within clade 8.
While mismatches between taxonomy and phylogenetic

placement within N. natrix are the rule and not the excep-
tion (Table 1), there are a few monophyletic taxa. The
well-supported most basal clade (Fig. 2) corresponds to
sequences of N. n. astreptophora from North Africa and the
Iberian Peninsula plus adjacent France. Within this clade, a
sequence of a Tunisian grass snake (Tu) is deeply divergent
from all European N. n. astreptophora (Eu). Also most
sequences of N. n. sicula (with one exception) represent a
deeply divergent clade (clade A), and the sequences of
Corso-Sardinian grass snakes constitute another well-sup-
ported clade (clade B). However, the four sequences from
Corsica (subspecies corsa) and the three sequences from
Sardinia (subspecies cetti) are not reciprocally monophyletic
(Fig. S1). Furthermore, our only two sequences of
N. n. syriaca represent a deeply divergent clade (clade 6).
The sister group of N. n. astreptophora is a major clade

whose monophyly is well supported only in Bayesian analy-
ses (Fig. 2). This clade comprises grass snake sequences
from most of the species’ range (except North Africa,
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Fig. 2 Mitochondrial phylogeny of grass snakes inferred from Maximum Likelihood analyses using 1984-bp mtDNA (ND4+tRNAs, cyt b)
of 407 samples of Natrix natrix and three samples of N. megalocephala. Terminal clades collapsed to cartoons. Outgroups (N. maura,
N. tessellata, Nerodia sipedon) removed for clarity; for a complete tree, see Fig. S1. Numbers along nodes indicate branch support under
Maximum Likelihood (1000 bootstrap replicates) and Bayesian analyses (posterior probabilities). Asterisks indicate maximum support under
both tree-building methods. Clade symbols correspond to Fig. 1; red letters and numbers preceding taxon names refer to the text and
Table 1. Red arrow highlights placement of Natrix megalocephala among N. natrix.
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Iberian Peninsula and adjacent France = N. n. astreptopho-
ra). Within this clade, there are two other subordinated
major clades, one well-supported clade from the eastern
part and another well-supported clade from the western
part of the range (including Apennine Peninsula and
Sicily). The clade from the east contains the eight subor-
dinated clades 1–8, and the clade from the west, the six
subordinated clades A–F. Most of these 14 clades conflict
with subspecies delineations (Table 1).
Some deeper nodes of the eastern clade are weakly

resolved and have very short branch lengths. By contrast,
seven of the eight terminal clades (1–4, 6–8) are well sup-
ported (Fig. 2). However, clade 5, corresponding to
sequences of N. n. persa from Bosnia and Herzegovina,
Greece, Macedonia and Montenegro, receives only weak
support, and mean uncorrected p distances between clade 5
and its sister group (clade 4) amount only to 0.55%
(ND4+tRNAs) and 1.38% (cyt b; Table S4). Within the
eastern clade, a similarly weak divergence occurs only
between the well-supported sister clades 1 and 2
(ND4+tRNAs: 0.72%, cyt b: 1.43%); among the other ter-
minal clades, much higher values of 2.37–5.56%
(ND4+tRNAs) and 3.23–5.74% (cyt b) are observed
(Table S4).
Sequences of N. n. persa and of grass snakes from the

putative hybrid zone between N. n. natrix and N. n. persa
occur in not less than seven distinct, in part deeply diver-
gent, clades (clades 1–5 and 7–8). Sequences of the no-
minotypical subspecies N. n. natrix occur together with
sequences of N. n. persa and other taxa in the well-sup-
ported clades 3, 4 and 8 (Fig. 2).
The deeper branching patterns within the western clade

are distinctly better resolved than in the eastern clade, and
branch lengths of the respective deeper nodes are longer
than in most of the deeper nodes of the eastern clade.
Within the western clade, sequences of Calabrian and Sicil-
ian grass snakes of the subspecies N. n. sicula (clade A) con-
stitute the sister group of the remaining sequences. The
successive clades are B (Corso-Sardinian grass snakes,
N. n. corsa and N. n. cetti), C (N. n. helvetica from Trentino
and Venezia in north-eastern Italy and Ticino, Switzerland)
and D (corresponding to a single sequence of a grass snake
from Apulia, Italy). The terminal crown group is formed
by clade E (N. n. helvetica and individuals from the hybrid
zone of N. n. helvetica and N. n. natrix) and clade F
(sequences of N. n. lanzai from Lazio and Tuscany, Italy,
and a sequence of N. n. sicula from Calabria). However,
compared with the basal clades A, B and C, the divergences
among clades D, E and F are distinctly less pronounced
and also weaker than between most other clades (Table
S4). This is mirrored by shorter branch lengths (Fig. 2)
and uncorrected p distances of only 0.29–0.80%

(ND4+tRNAs) and 0.28–1.16% (cyt b) for clades D, E and
F, opposed to values of 2.12–6.12% (ND4+tRNAs) and
2.06–5.36% (cyt b) when clades A, B and C are compared with
one another and with clades D, E and F (Table S4).

Discussion
Phylogeography

Our results, based on a nearly range-wide sampling, dem-
onstrate considerable phylogeographic differentiation of
grass snakes. Uncorrected p distances for the two studied
mitochondrial markers (Table S4) resemble or clearly
exceed divergences observed within the other two western
Palaearctic Natrix species, both having a pronounced phy-
logeographic structure (Guicking et al. 2008b, 2009). With
respect to the cyt b gene, mean divergences of 0.28–7.51%
were observed among grass snake clades (Table S4). The
maximum uncorrected p distance described for cyt b
sequences of Natrix maura is 4.74% (European vs. Moroc-
can snakes; Guicking et al. 2008b), and a maximum value
of 8.42% was observed when N. tessellata from the Cauca-
sus and Greece were compared (Guicking et al. 2009).
However, these values are maxima, and not mean values, as
reported in the present study.
Based on mtDNA sequences of 410 grass snakes, our

phylogenetic analyses revealed 16 distinct terminal clades
(Figs 1 and 2). One of these clades includes the three
sequences of N. megalocephala together with N. natrix
sequences. These 16 clades correspond to three more
inclusive clades from (i) the Iberian Peninsula plus North
Africa, (ii) East Europe and Asia and (iii) West Europe
including Corso-Sardinia, the Apennine Peninsula and Sic-
ily (Fig. 2). These three major clades had already been
identified in previous studies (Guicking et al. 2006, 2008a;
Fritz et al. 2012).
Guicking et al. (2006, 2008a) and Fritz et al. (2012) had

distinguished within clades (i), (ii) and (iii) a maximum of
eight terminal clades. However, these studies had used a
quite restricted sampling of 23–30 individuals and therefore
had lumped for phylogeographic purposes some distinct
lineages together, which were represented by single
sequences only. If the terminal clades and lineages of Gu-
icking et al. (2006, 2008a) and Fritz et al. (2012) are com-
pared with our 16 clades, it is clear that just the following
four clades are missing: clade Tu (N. n. astreptophora from
Tunisia), clade 2 (N. n. persa from Georgia and Dagestan),
clade 6 (N. n. syriaca) and clade A (N. n. sicula from Sicily
and Calabria).
Based on molecular clock calculations, Fritz et al. (2012)

had inferred that the basal clades (i), (ii) and (iii) diverged
some 7–11 million years ago, while the then known 12 ter-
minal lineages were dated to the Late Miocene to the Early
Pleistocene, a time frame matching also well with the
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branch lengths of the four newly discovered terminal clades
(compare Fig. 2 of this study with Figs 1 and 3 in Fritz
et al. 2012). It is obvious that the branch lengths of some
deeper nodes of the East European–Asian clade (ii) are
distinctly shorter than in the West European clade (iii),
suggestive of more rapid radiation. In the West European
clade, however, the terminal subordinated clades D, E and
F also have rather short branches, indicating a later diver-
gence compared with the remaining clades A, B and C.
The deep divergence between the Tunisian clade Tu

and European samples of N. n. astreptophora (clade Eu;
Fig. 2; Table S4) suggests an old separation of these two
lineages. However, without studying grass snakes from
Morocco and Algeria, any interpretation of this pattern has
to remain highly speculative. It is well known that Algerian
and Tunisian populations are often highly distinct from
Moroccan ones (e.g. Pleurodeles spp., Carranza & Arnold
2004; Veith et al. 2004; Hyla meridionalis, Recuero et al.
2007; Mauremys leprosa, Fritz et al. 2006; Testudo graeca,
Fritz et al. 2009a; Chamaeleo chamaeleon, Dimaki et al. 2008;
Timon spp., Paulo et al. 2008; Coronella girondica, Santos
et al. 2012; Macroprotodon spp., Carranza et al. 2004; Malpo-
lon spp., Carranza et al. 2006; Natrix maura, Guicking et al.
2008b; Vipera latastei complex, Velo-Ant�on et al. 2012),
while the differentiation between Moroccan and Iberian
populations can be sometimes quite shallow (e.g. Pleurodeles
waltl, Carranza & Arnold 2004; Veith et al. 2004; Emys
orbicularis, Fritz et al. 2007a; Mauremys leprosa, Fritz et al.
2006; Macroprotodon brevis, Carranza et al. 2004; Malpolon
monspessulanus, Carranza et al. 2006).
Due to a patchy sampling in south-western France, we

were unable to confirm the putative contact zone between
clade Eu (N. n. astreptophora) and the neighbouring clade E
(N. n. helvetica). However, thanks to our much denser
sampling in other regions, not only some new clades were
discovered. Also the distribution ranges of previously iden-
tified clades became much clearer (Fig. 1), allowing to
refine and to expand the preliminary phylogeographic con-
siderations of Fritz et al. (2012). These authors concluded
that, in agreement with general phylogeographic patterns
of the western Palaearctic (Hewitt 1996, 2000, 2011; Tab-
erlet et al. 1998; Joger et al. 2007; Schmitt 2007; Schmitt &
Varga 2012), at least one glacial refuge was located in each
of the southern European peninsulas and in Anatolia. Fritz
et al. (2012) suggested that multiple refugia existed south of
the Alps and in the Balkan Peninsula. This is confirmed by
our present study. However, the situation is even more
complex than thought before.
Our additional samples indicate the existence of not less

than four distinct refugia in the Apennine Peninsula and
Sicily: (i) in western Italy (corresponding to clade F; Figs 1
and 2), (ii) in north-eastern Italy plus adjacent Switzerland

(clade C), (iii) in south-eastern Italy (clade D), and (iv) a
newly identified refuge in Sicily and Calabria (clade A).
This fine-scale pattern of ‘refugia-within-refugia’

(G�omez & Lunt 2007) or ‘microrefugia’ (Joger et al. 2007)
in Italy and adjacent regions is at first glance unexpected
because Schmitt (2007) argued that the phylogeographic
patterns within the Apennine Peninsula are simpler than in
the other, larger, southern European peninsulas. Pedall
et al. (2011) contradicted this view and listed many plants
and animals for which more than one refuge has to be
postulated in the Italian peninsula. If the putatively four
continental Italian and Sicilian refugia of N. natrix are
compared with other taxa, it is obvious that this is by far
not an idiosyncratic pattern. A phylogeographic differentia-
tion in lineages east and west of the Apennine chain, paral-
leling clades C and F, occurs in some other reptiles, for
instance, in European pond turtles (E. orbicularis, Pedall
et al. 2011), wall lizards (Podarcis siculus, Podnar et al. 2005)
and whip snakes (Hierophis viridiflavus, Rato et al. 2009). A
distinct ‘Padano-Venetian refuge’, suggested by the distri-
bution of our clade C, is further supported by the occur-
rence of the endemic frog species Rana latastei
(Grossenbacher 2004) and endemic mitochondrial clades of
the Italian crested newt Triturus carnifex (Canestrelli et al.
2012a), the pool frog Pelophylax lessonae (Canestrelli &
Nascetti 2008), the spadefood toad Pelobates fuscus (Crottini
et al. 2007), the tree frog Hyla intermedia (Canestrelli et al.
2007) and the Italian wall lizard Podarcis siculus (Podnar
et al. 2005). Finally, the distinct refuge in Sicily and adja-
cent southernmost continental Italy (Calabria), harbouring
the most divergent clade A within the western group of
N. natrix (Figs 1 and 2), is corroborated by quite a number
of other taxa. Besides the endemic Sicilian species Emys
trinacris (Fritz et al. 2005; Pedall et al. 2011), Podarcis
waglerianus (Böhme 1986) and Bufotes siculus (St€ock et al.
2008), there are deeply divergent mitochondrial clades in
Sicily and Calabria in species such as hedgehogs (Erinaceus
europaeus, Seddon et al. 2001), Italian hares (Lepus corsicanus,
Pierpaoli et al. 1999), bank voles (Myodes glareolus, Colan-
gelo et al. 2012), red squirrels (Sciurus vulgaris, Grill et al.
2009), green and wall lizards (Lacerta bilineata, Godinho
et al. 2005; B€ohme et al. 2007 and P. siculus, Podnar et al.
2005), newts (Lissotriton italicus and T. carnifex, Canestrelli
et al. 2012a,b) and frogs (H. intermedia, Canestrelli et al.
2007; Pelophylax lessonae, Canestrelli & Nascetti 2008; Rana
italica, Canestrelli et al. 2008).
Fritz et al. (2012) concluded that western Central Europe

was colonized in the postglacial by grass snakes originating
from the western Apennine refuge. However, our expanded
sampling rather suggests that the endemic clade F, distrib-
uted in the north-western Italian peninsula (Fig. 1), did not
expand into western Central Europe. The closely related
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clade E from West Europe (including southern France) is
clearly distinct (Fig. 2), and it seems more likely that its
extant range results from a range expansion from within
the south of its present distribution range (southern
France).
Based on morphological evidence, it is generally accepted

that the western subspecies N. n. helvetica meets and inter-
grades with the eastern subspecies N. n. natrix in the Rhine
region (e.g. Thorpe 1979; Kabisch 1999; Kreiner 2007).
Our mitochondrial data generally confirm this pattern in
that the geographical distribution of the western clade E
abuts the range of the eastern clade 3 there. However,
what was completely unexpected is the finding that another
eastern clade (clade 4) encroaches deeply into Central
Europe (Fig. 1). Haplotypes of clades 3 and 4 occur in
broad sympatry throughout southern and eastern Germany,
on Gotland (Sweden), in southern Poland, Austria and
Slovakia, indicating another Central European contact
zone. Yet, to the south, the range of clade 4 seems to inter-
rupt the distribution of clade 3. Records of clade 3 are
lacking for the western central Balkan Peninsula, where
clade 4 is widely distributed. In the south-eastern Balkans,
there are again many records for clade 3, which occurs
there in part in close proximity to haplotypes of clade 4
and another clade (clade 7). Moreover, in the south-
western Balkans, clade 4 is replaced by the allied clade 5.
We cannot exclude that the disjunct range of clade 3 is an
artefact and that we simply missed to sample clade 3 in
some regions. Moreover, the new records for clade 3 in the
south-eastern Balkan Peninsula contradict the hypothesis
(Fritz et al. 2012) that grass snakes harbouring haplotypes
of this clade survived the last glaciation north of the Alps
and suggest rather a northward range expansion from a
Balkanic refuge.
In summary, this complicated phylogeographic pattern

indicates that four, and not only two (Fritz et al. 2012), dis-
tinct glacial refugia were located in the Balkan Peninsula,
which harboured grass snakes of clades 3, 4, 5 and 7. The
exact location of these refugia is difficult to determine
because the extant distribution ranges seem to be blurred
by extensive Holocene range expansions and, perhaps,
range shifts. The relatively restricted distribution range of
clade 5 suggests that its refuge was in the south-west of the
Balkan Peninsula. The refugia of the other three clades
(3, 4, 7) were most probably further east, somewhere south
of the boundary of permafrost or deep seasonal freezing
(Frenzel et al. 1992), that is, south of the Danube Basin.
Therefore, it is possible that the refugial range of clade 7
differed not too much from its extant range, embracing the
northern Aegean region, western and southern Anatolia
and Cyprus. The relatively pronounced differentiation
within clade 7 (Fig. S1; Table S4) could indicate several

microrefugia in its extant range, being richly structured by
sea straits and mountain chains. The disjunct range of clade
3 suggests that it originated in the south-eastern Balkan
Peninsula. It resembles the distribution range of a certain
mitochondrial lineage of the European pond turtle (Emys
orbicularis lineage II), which is thought to have spread
northward via the Axios/Vardar and Danube Rivers and
the Moravian Gate (Fritz et al. 2007a; Sommer et al. 2009).
It is plausible that N. natrix, living in similar habitats as
E. orbicularis, used the same pathway.
Another parallel to E. orbicularis is the distribution of

clade 8, which is largely congruent with the distribution
range of another mitochondrial lineage of the pond turtle
(lineage I; Fritz et al. 2007a, 2009b). The glacial refuge of
both was most probably located somewhere close to the
Caucasus Mountains. Also the localized range of clade 6
agrees perfectly with an endemic lineage of E. orbicularis
(lineage X; Fritz et al. 2009b). However, unlike E. orbicular-
is, there are two distinct mitochondrial clades of N. natrix
present in eastern Transcaucasia and northern Iran (clades
1 and 2), whereas only one lineage is present in the turtle
(lineage VII; Fritz et al. 2007a, 2009b).

Taxonomy

It has been repeatedly argued that mtDNA sequences alone
are by far no perfect proxy for phylogeography and taxo-
nomic differentiation, among others due to their strictly
maternal inheritance, the lack of recombination, their
reduced effective population size and resulting bias caused
by genetic drift, sex-specific dispersal and sometimes mas-
sive mitochondrial introgression, even across species bor-
ders (e.g. Ballard & Whitlock 2004; Edwards et al. 2005;
Mallet 2005; Bazin et al. 2006; Currat et al. 2008). How-
ever, with regard to western Palaearctic amphibians and
reptiles, there is a good agreement between taxonomic
units (species, subspecies) and mitochondrial differentiation
(Joger et al. 2007), with mismatches typically indicating bad
taxonomy (e.g. Podnar et al. 2005; Ursenbacher et al. 2006,
2008; Fritz et al. 2007b, 2009b; Gvo�zd�ık et al. 2010a,b;
Pedall et al. 2011). Other causes for mismatches are either
hybridization and intraspecific gene flow (e.g. in the pond
turtle Emys orbicularis, Pedall et al. 2011), interspecific
mitochondrial introgression (e.g. in crested newts of the
Triturus cristatus complex, Wielstra et al. 2013) or, rarely,
complete mitochondrial replacement, like in the Carpathian
newt Lissotriton montandoni (Zieli�nski et al. 2013), so that
the application of mitochondrial markers, at least as a first
step, is still well justified. This is in line with a careful
review of recent literature on birds (Zink & Barrowclough
2008), showing that mtDNA delivers robust results for
phylogeography and species limits in the vast majority of
cases.
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In grass snakes, most previous assessments of geographi-
cal variation were based on morphological investigations
that used, with the notable exception of Thorpe (1979),
small or heavily biased samples with respect to geo-
graphical coverage and age or sex classes (e.g. Hecht 1930;
Mertens 1947, 1957, 1966; Kramer 1970; Nilson & Andr�en
1981). Putatively diagnostic characters for subspecies of
Natrix natrix, and for N. megalocephala, concern differences
in total size, body proportions, colouration and pattern,
while meristic characters typically broadly overlap (Kabisch
1999; Orlov & Tuniyev 1999). Apart from the publications
by Hille (1997), Guicking et al. (2006, 2008a) and Fritz
et al. (2012), no attempt has been undertaken yet to analyse
geographically correlated genetic variation in N. natrix.
Hille (1997) presented preliminary allozyme data for
N. megalocephala and some subspecies of N. natrix, largely
without novel insights. Based on a quite limited sampling
of 23–30 snakes, Guicking et al. (2006, 2008a) and Fritz
et al. (2012) presented phylogenetic analyses and molecular
clock calculations using mtDNA sequences and found dee-
ply divergent clades within N. natrix that often conflicted
with traditionally recognized subspecies. However, our
study provides for the first time a comprehensive and
nearly range-wide examination of mitochondrial variation
of grass snakes, based on sequences of 410 snakes. We
included in our investigations samples of N. megalocephala
and of 13 of the 14 subspecies of N. natrix recognized by
some authors (Table 1).
If each taxon represents an evolutionarily distinct line-

age, it should be expected that there is a general agreement
between the geographical distribution of the mitochondrial
clades and the 15 taxa, with the possible exception of the
range borders of the subspecies of N. natrix, where the
exchange of mitochondria could cause mismatches. In other
words, it should be expected that the mitochondrial haplo-
types in the core regions of the distribution ranges of each
taxon are reciprocally monophyletic and constitute clearly
distinct mitochondrial clades.
However, we found 16, and not 15, mitochondrial

clades, and only few of them correspond well to any taxon
(Figs 1 and 2; Table 1). Most notably, N. megalocephala, a
taxon described as a distinct species (Orlov & Tuniyev
1987), does not represent a distinct clade. Rather, the three
sequences of N. megalocephala are nested in the paraphyletic
clade 8 containing also sequences of three subspecies of
N. natrix (N. n. natrix, N. n. persa, N. n. scutata). More-
over, none of the three haplotypes of the N. megalocephala
is unique; each haplotype is also represented by N. natrix
sequences of clade 8. Using 32 allozyme loci, Hille (1997)
found N. megalocephala undifferentiated from samples of
N. n. natrix from Central Europe and N. n. persa from the
Peloponnesus, Greece, and the morphological distinctive-

ness of N. megalocephala was repeatedly questioned (Jandz�ık
2005; Frotzler et al. 2011; G€oc�men et al. 2011). According
to the original description (Orlov & Tuniyev 1987),
N. megalocephala differs from N. natrix by its wider head,
less distinct frontal and parietal scutes, and the more mas-
sive body (see also Orlov & Tuniyev 1999). However,
there are intermediate specimens known (Jandz�ık 2005),
and big-headed grass snakes also occur in other parts of
the range of N. natrix (G€oc�men et al. 2011), implying that
the putatively diagnostic characters of N. megalocephala
represent merely ontogenetic variation.
The only taxa being represented by reciprocally mono-

phyletic mitochondrial clades are N. n. astreptophora and
N. n. syriaca. However, the clade of N. n. astreptophora con-
tains two deeply divergent lineages, one corresponding to
the only studied North African grass snake and the other
to all European samples of the subspecies astreptophora.
This suggests that North African representatives of
N. n. astreptophora could be taxonomically distinct and a
morphological reassessment is warranted, as is the inclusion
of Moroccan and Algerian samples in genetic investigations
(see ‘Phylogeography’).
Also the putative range of N. n. sicula (Sicily, Calabria)

agrees quite well with the distribution of clade A. The
occurrence of clade A and clade C haplotypes in close
proximity in Calabria indicates a contact zone in this
region, which is paralleled by some other taxa (Podarcis sicu-
lus, Podnar et al. 2005; Lissotriton italicus and Triturus carni-
fex, Canestrelli et al. 2012a,b; Hyla intermedia, Canestrelli
et al. 2007; Pelophylax lessonae, Canestrelli & Nascetti 2008;
Rana italica, Canestrelli et al. 2008; perhaps Emys orbicularis
and E. trinacris, Fritz et al. 2005).
Sequences of the Corsican and Sardinian subspecies

N. n. corsa and N. n. cetti together constitute the well-
supported clade B (Fig. 2); however, sequences of the two
subspecies are not reciprocally monophyletic (Fig. S1).
These two subspecies differ significantly in colouration and
pattern (Engelmann et al. 1986; Gruber 1989; Kabisch
1999; Arnold & Ovenden 2002; Kreiner 2007; Vanni &
Cimmaruta 2010), suggesting that such characters may
reflect rather population-specific characters.
All other subspecies of N. natrix conflict with mitochon-

drial clades, supporting the view (Guicking et al. 2008a;
Fritz et al. 2012) that a taxonomic revision of grass snakes
is required. Mitochondrial DNA sequences of Cypriot
grass snakes (N. n. cypriaca), characterized by distinctive
colouration and pattern (Baier et al. 2009), are not recipro-
cally monophyletic with respect to sequences of grass
snakes from neighbouring eastern Mediterranean regions
(clade 7; Figs 1 and S1). Also samples of the island-
endemic subspecies N. n. gotlandica (Gotland, Sweden)
and N. n. schweizeri (Cyclades, Greece) yielded no unique
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haplotypes (Fig. 2; Table 1). The haplotypes detected in
both subspecies belong to clades 3 and 4, which are also
present in neighbouring mainland populations. This does
not corroborate the validity of N. n. gotlandica and
N. n. schweizeri and argues again rather in favour of popu-
lation specificity of their distinctive colouration and pattern
characters (Engelmann et al. 1986; Gruber 1989; Kabisch
1999; Arnold & Ovenden 2002; Kreiner 2007). The island
of Gotland was completely inundated by the Baltic Ice
Lake 11 000 years ago. It did not emerge before
10 300 years ago and was later not connected by land
bridges to the surrounding Baltic coasts (Bj€orck 1995).
This implies that the Gotland population of grass snakes
was founded only in the Holocene by oversea dispersal
from what is now Poland, northern Germany, Denmark or
Sweden, regions where grass snakes of clades 3 and 4 are
currently widely distributed (Fig. 1), and that the distinc-
tive colouration and pattern characters of the Gotland
snakes evolved quite rapidly.
We cannot exclude that some mismatches between mor-

phological taxon delimitation and clade assignment (Figs 1
and 2; Table 1) result from mitochondrial introgression.
This could be, for instance, the case with respect to the
conflicting sequences assigned to N. n. helvetica from west-
ernmost Croatia and Slovenia, a region where several sub-
species are thought to meet (N. n. helvetica, N. n. natrix,
N. n. persa; Fig. 1). However, introgression is unlikely
when large parts of a subspecies’ range are occupied by
endemic mitochondrial clades, as in the northern Italian
part of the range of N. n. helvetica (Fig. 1: clade C). This
suggests rather the occurrence of cryptic or overlooked dis-
tinct taxa there (see ‘Phylogeography’ for other endemic
genetic lineages in the Padano-Venetian region). A similar,
but more complex, situation refers to the striped subspecies
N. n. persa, in whose range several endemic and locally
restricted clades are distributed. Four of these clades are
confined to the putative range of N. n. persa (clades 1, 2, 5,
7), while three further clades (clades 3, 4, 8) deeply
encroach into the ranges of the two unstriped subspecies
N. n. natrix and N. n. scutata (Fig. 1), rendering the situa-
tion even more complicated.
Striped grass snakes identified with N. n. persa are dis-

tributed over a vast range, from the Balkan Peninsula
through Turkey and Transcaucasia to the south-eastern
range border in Iran (Fig. 1). The considerable mitochon-
drial diversity within this vast territory implies that back
stripes occur in several distinct taxa, which were historically
lumped together due to similar morphology.
In the north of the distribution range of grass snakes

(corresponding to the distribution ranges of the subspecies
N. n. helvetica, N. n. natrix and N. n. scutata), back stripes
are rare, but there are some records of striped snakes from

Central Europe (Austria: Grillitsch & Cabela 2001; Czech
Republic: Werner 1929; Germany: G€unther & V€olkl 1996;
Slovakia: L�ac 1968; Reh�ak 1992). This situation suggests
that clinal variation or selection could play a role.
For the time being, it is impossible to disentangle the

conflicting patterns of morphological and mitochondrial
variation. Further research employing nuclear markers, like
nuclear genes and rapidly evolving microsatellite loci, may
help to elucidate this confusing situation, also with respect
to the newly discovered Central and South-east European
contact zone between the mitochondrial clades 3 and 4
(Fig. 1). Also a morphological re-examination of striped
grass snakes seems promising to unravel possibly over-
looked morphological differences between representatives
of the distinct mitochondrial clades.

Conclusions
Several distinct lines of evidence (morphology, allozymes,
mtDNA) indicate that Natrix megalocephala Orlov & Tuni-
yev, 1987 is invalid. Therefore, this species is synonymized
here with N. natrix (Linnaeus, 1758). From within the
range of N. natrix, 16 terminal mitochondrial clades were
identified, most of which conflict with morphologically
defined subspecies. These 16 clades correspond to three
more inclusive clades from (i) the Iberian Peninsula plus
North Africa, (ii) East Europe and Asia and (iii) West Eur-
ope including Corso-Sardinia, the Apennine Peninsula and
Sicily. The highest mitochondrial diversity is found in the
south of the range, where the putative glacial refugia were
located. Endemic mitochondrial clades occur in each of the
southern peninsulas of Europe, on Corso-Sardinia, in
northern Africa, Anatolia and the neighbouring Near and
Middle East, suggesting that the respective glacial refugia
were located there. While there is evidence for only one
refuge in the Iberian Peninsula, the Apennine Peninsula
and Sicily harboured most likely four distinct microrefugia.
Also for the Balkan Peninsula, there is evidence for four
microrefugia. Further multiple microrefugia were located
in Anatolia and the neighbouring Near and Middle East.
According to the extant distributions of mitochondrial
clades, the north-west of the species’ range was colonized
from southern France, while Central Europe was reached
by two distinct range expansions from within the southern
Balkan Peninsula, resulting in two distinct secondary con-
tact zones across Central Europe. One of these contact
zones was theretofore unknown. Eastern Europe and
north-western Asia were invaded from another refuge close
to the Caucasus Mountains, and the existence of a third
northern secondary contact zone in eastern Poland and
Ukraine seems likely. Further, in part newly identified, sec-
ondary contact zones are in southern Italy, the Balkans and
Transcaucasia. To disentangle the manifold conflicts
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between morphologically defined subspecies and mitochon-
drial differentiation, further research is needed, including
the application of nuclear genomic markers and a morpho-
logical re-examination of morphologically similar popula-
tions representing deeply divergent mitochondrial clades.
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Supporting Information
Additional Supporting Information may be found in the
online version of this article:
Fig. S1. Maximum Likelihood tree, depicting relation-

ships of all 410 samples of Natrix natrix and N. megalocep-
hala. Sample codes are GenBank accession numbers (Table
S1). Colours correspond to Fig. 2 except for clade 3, which
is shown in black. For further explanations, see Fig. 2.
Table S1. Grass snake samples studied and GenBank

accession numbers of their DNA sequences.
Table S2. Primers used for PCR and sequencing. For

primer combinations and PCR conditions, see Table S3.
Table S3. PCR protocols.
Table S4. Mean uncorrected p distances (percentages)

between and within mtDNA clades of grass snakes (top:
ND4+tRNAs, bottom: cyt b). Below the diagonal, diver-
gences between groups; on the diagonal, within group
divergences in boldface.
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