Molecular Phylogenetics, tRNA Evolution, and Historical Biogeography in Anguid Lizards and Related Taxonomic Families

J. Robert Macey,,,1 James A. Schulte II,* Allan Larson,* Boris S. Tuniyev, \dagger Nikolai Orlov, \ddagger and Theodore J. Papenfuss§
*Department of Biology, Box 1137, Washington University, St. Louis, M issouri 63130; † Caucasian State Biosphere Reserve, Sochi, Russia; \ddagger Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia; and § M useum of Vertebrate Zoology, University of California, Berkeley, California 94720

Received December 24, 1997; revised October 15, 1998

Abstract

Phylogenetic relationships among lizards of the families Anguidae, Anniellidae, Xenosauridae, and Shinisauridae are investigated using 2001 aligned bases of mitochondrial DNA sequence from the genes encoding ND1 (subunit one of NADH dehydrogenase), tRNA ${ }^{\text {lee }}$, tRNA ${ }^{\text {GIn, }}$ tRNA ${ }^{\text {Met, }}$, ND2, tRNA ${ }^{\text {Trp, }}$ tRNA ${ }^{\text {Ala, }}$, tRNA ${ }^{\text {Asn }}$, tRNA ${ }^{\text {Cys }}$, tRNA ${ }^{\text {Tyr }}$, and COI (subunit I of cytochrome C oxidase), plus the origin for light-strand replication $\left(O_{L}\right)$ between the tR NAAsn and the tR NA ${ }^{\text {cys }}$ genes. The aligned sequences contain 1013 phylogenetically informative characters. A well-resolved phylogenetic hypothesis is obtained. Because monophyly of the family Xenosauridae (Shinisaurus and Xenosaurus) is statistically rejected, we recommend placing Shi nisaurus in a separate family, the Shinisauridae. Thefamily Anniellidae and the anguid subfamilies Gerrhonotinae and Anguinae each form monophyletic groups receiving statistical support. The Diploglossinae*, which appears monophyletic, is retained as a metataxon (denoted with an asterisk) because its monophyly is statistically neither supported nor rejected. The family Anguidae appears monophyletic in analyses of the DNA sequence data, and statistical support for its monophyly is provided by reanalysis of previously published allozymic data. Anguid lizards appear to have had a northern origin in Laurasia. Taxa currently located on Gondwanan plates arrived there by dispersal from the north in two separate events, one from the West Indies to South America and another from a Laurasian plate to Morocco. Because basal anguine lineages are located in western Eurasia and Morocco, formation of the Atlantic Ocean (late E ocene) is implicated in the separation of the Anguinae from its North American sister taxon, the Gerrhonotinae. Subsequent dispersal of anguine lizards to East Asia and North America appears to have followed the Oligocene drying of the Turgai Sea. The alternative hypothesis, that anguine lizards originated in North America and dis-

[^0]persed to Asia via the Bering land bridge with subsequent colonization of E urope and Morocco, requires a phylogenetic tree seven steps longer than the most parsimonious hypothesis. North African, European, and West Asian anguines were isolated from others by the rapid uplift of Tibet in the late Oligocene to Miocene. Phylogenetic analysis of evolutionary changes in the gene encoding tR NA ${ }^{\text {Cys }}$ suggests gradual reduction of dihydrouridine (D) stems by successive deletion of bases in some lineages. This evolutionary pattern contrasts with the one observed for parallel elimination of the D-stem in mitochondrial tRNAs of eight other reptile groups, in which replication slippage produces direct repeats. An unusual, enlarged T\&C (T) stem is inferred for tRNA ${ }^{\text {Cys }}$ in most species. © 1999 Academic Press

Key Words: Reptilia; Sauria;Anguimorpha;Anguidae; Anniellidae; Shinisauridae; Xenosauridae; Asia; Europe; Morocco; North America; historical biogeography; mitochondrial DNA; cysteinetR NA; phylogenetics

Anguid lizards, found predominately in the northern hemisphere, are an exciting group for a molecular phylogenetic study of biogeographic fragmentation between North America and Eurasia. The anguimorph family Anguidae contains three subfamilies. The subfamily Gerrhonotinae occurs strictly in North America and Central America. The subfamily Diploglossinae ranges from Mexico and the West Indies to South America. The subfamily Anguinae, comprising the genera Anguis and Ophi saurus, is the only anguid subfamily that occurs in the Old World. Anguis is restricted to Europe, whereas Ophisaurus is found in eastern North America, eastern Asia, western Asia, and adjacent Europe and Morocco.

Some taxonomists consider the anguimorph lizard family Anniellidae a fourth subfamily of the Anguidae (see Gauthier, 1982). It comprises two species, Anniella geronimensis and A. pulchra, from the west coast of North America. Three major hypotheses have been
considered for the phylogenetic position of the Anniellidae relative to the Anguidae: (1) Annidla is the sister group to all anguid taxa (Good, 1987), (2) Anniella is the sister group to the Anguinae (Gauthier, 1982), and (3) Anniella is the sister taxon to Anguis of Europe (Keqin and Norell, 1998).

The anguimorph family Xenosauridae occurs in the New World (Xenosaurus) and Old World (Shinisaurus). Some authors consider Shinisaurus a separate monotypic family, the Shinisauridae (see Zhao and Adler, 1993). No previous molecular study has examined the relationships of these taxa.

A major question within theAnguinae is the phylogenetic position of Anguis fragilis, Ophisaurus apodus, and O. koellikeri, which occur between two extremely large barriers to faunal distributions, the Atlantic Ocean and the Tibetan Plateau. Current taxonomy implies at least two separate origins of anguid lizards in this region. Mitochondrial DNA sequences are reported for these taxa as well as for the East Asian O. harti and the North American O. attenuatus and O. ventralis.

We examine all genera within the Gerrhonotinae except Col optychon, which is known from only three specimens. Abronia oaxacae, B arisia imbricata, Gerrhonotus liocephalus, and Mesaspis morel eti represent the four tropical genera in our analysis. Five species of Elgaria, primarily from the temperate part of North America, are examined. Elgaria coerulea, sampled from coastal California, is the most northern species of the Gerrhonotinae. Two other species are included from California, E. multicarinata collected from the east side of the Sierra Nevada and E. panamintina from an adjacent population in the Inyo Mountains. Elgaria kingii, sampled from Arizona, occurs along the west coast of Mexico in the Sierra Madre Occidental opposite Baja California where E. paucicarinata was obtained from the Sierra de La Laguna. This choice of species allows an examination of taxa from both sides of the Gulf of California, a region of rifting between tectonic plates.

All genera of the neotropical subfamily Diploglossinae are examined. Ophiodes striatus represents the only endemic anguid genus in South America. Celestus enneagrammus from Mexico and Diploglossus bilobatus from Costa Rica represent mainland North American diploglossines, and Diploglossus pleei, Sauresia agasepsoides, and Wetmorena haetiana represent West I ndian taxa.

Our sampling includes a comprehensive representation of species in the Anniellidae (Anniella geronimensis and A. pulchra) and genera of the Xenosauridae (Shinisaurus crocodilurus from China and Xenosaurus grandis from Mexico).

Heloderma suspectum and Varanus griseus, New World and Old World representatives of the Varanoidea, serve as outgroups to root the tree. Previous
phylogenetic analyses of morphological data (Estes et al., 1988; Macey et al., 1997a; Schwenk, 1988) cannot determine whether the Varanoidea or the Xenosauridae is closer to the anguid and anniellid clade; this question, however, is not a focus of this study.

Phylogenetic relationships are examined using 2001 aligned positions (1013 informative) of mitochondrial DNA sequence. The region sequenced extends from the protein-coding gene, ND1 (subunit one of NADH dehydrogenase), through the genes encoding tRNA ${ }^{l l e}$, tRNA ${ }^{\text {GIn, }}$, tRNA ${ }^{\text {Met, }}$ ND2, tRNA ${ }^{\text {Trp, }}$, tRNAAla, tRNAAsn, tRNA ${ }^{\text {Cys }}$, and tRNA ${ }^{\text {Tyr }}$ to the protein-coding gene COI (subunit I of cytochrome c oxidase), and includes the replication origin for the light strand $\left(\mathrm{O}_{\mathrm{L}}\right)$ between the tRNA ${ }^{\text {Asn }}$ and the tRNA ${ }^{\text {Cys }}$ genes.

Previously published allozymic data (Good, 1987, 1988) are reanalyzed and compared with the results obtained from the new DNA sequence data to provide a comprehensive assessment of relationships among the taxa investigated.

The mitochondrial genomic region sequenced demonstrates several unusual characteristics among squamate reptiles (Kumazawa and Nishida, 1995; Kumazawa et al., 1996; Macey et al., 1997a,b,c; Seutin et al., 1994). Within anguimorph lizards, gene sequences encoding tRNA ${ }^{\text {Cys }}$ Iack a dihydrouridine (D) stem and instead contain a D-arm replacement loop in Varanus (Macey et al., 1997b). A model involving replication slippage has been proposed for the formation of D-arm replacement loops in mitochondrial tRNAs (Macey et al., 1997b). Under this model direct repeats are expected and the size of the D-arm replacement loop should be less than 12 bases, the minimum number of bases normally found between the amino acidacceptor (AA) and the anticodon (AC) stems when a D-stem is present (Macey et al., 1997b). Alternatively, gradual relaxation of pairing among bases in the D-stem would not produce either repeats or deletion of bases. Gradual del etion of bases or base pairs would not produce repeats but could produce length variation that may result in less than 12 bases between the AAand AC stems. Under a model of gradual deletion of bases or base pairs, a tRNA that has a single base pairing in the D-stem could result, as has been observed in the tRNAAsn gene of the frog, Xenopus Iaevis (Dirheimer et al., 1995; Roe et al., 1985). Mitochondrial tRNAs that have a single base pairing in the D-stem have a tertiary structure distinct from both standard tRNAs and tRNAs in which no pairings are observed between the AA- and AC-stems (Steinberg et al., 1994). A phylogenetic analysis of secondary structure for tRNACys within the Anguimorpha serves to test the hypothesis that D-arm replacement loops are formed by replication slippage versus gradual relaxation or del etion of bases within the D-stem.

MATERIALS AND METHODS

Specimen Information

Museum numbers and localities for voucher specimens from which DNA was extracted, and GenBank accession numbers are presented below. Acronyms are CAS for California Academy of Sciences, San Francisco; MVZ for Museum of Vertebrate Zool ogy, University of California at Berkeley; USNM for United States National Museum, Washington, DC; UTA-R for University of Texas at Arlington; and ZISP for Zool ogical Institute, St. Petersburg, Russia. Acronyms followed by a dash RM or TP represent field numbers of the first or sixth author, respectively, for uncatal ogued specimens being deposited in the Museum of Vertebrate Zoology. The acronym followed by a dash SBH represents a field number of S. Blair Hedges for an uncatalogued specimen being deposited in the United States National Museum. The three previously reported sequences have been extended by 303 bases to include 101 additional amino acid positions of the ND1 gene, and the GenBank accessions have been updated accordingly.

Hel oderma suspectum: no voucher, AF 085603, probably Arizona. Varanus griseus: ZISP 19576, U71334 (M acey et al., 1997a), east side of Nephtezavodsk which is 30 km WNW of Deynau ($39^{\circ} 15^{\prime} \mathrm{N} 63^{\circ} 11^{\prime} \mathrm{E}$), Chardjou Region, Turkmenistan. Shinisaurus crocodilurus: MVZ 204291, AF 085604, China. Xenosaurus grandis: MVZ 137789, U71333 (Macey et al., 1997a), slopes behind Casa de Miguel Ceron, Cuatlapan, Veracruz, Mexico. Annidla geronimensis: MVZ 134196, AF 085605, beach, 3.5 miles W of Col onia Guerrero, Baja California Norte, Mexico. Anniella pulchra: MVZ-TP24334, AF 085606, SW 1/4 Sec. 23, T. 2 N., R. 2 E., sand dune on N side of railroad tracks, 0.2 miles SE J ct of H wy 4 and Big Break Road, Oakley, Contra Costa Co., California. Celestus enneagrammus: MVZ 191045, AF 085607, Elev. 2125 m, LaJ oya, Veracruz, M exico. Dipl ogl ossus bi lobatus: MVZ 207334, AF 085608, 3.3 km E ranch headquarters at Moravia on road to indian reservation, Prov. Cartago, Costa Rica. Di plogl ossus plei: MVZ-TP24475, AF 085609, Bosque de Guajataca, Vereda Salomé, approx. 7 km airline SW Quebradillas ($18^{\circ} 24.5^{\prime} \mathrm{N} 66^{\circ}$ 57.8' W), Puerto Rico. Ophiodes striatus: MVZ 191047, AF 085610, Edo. São Paulo, Brazil. Sauresia agasepsoides: USNM-SBH 194829, AF 085611, Bucan Detwi (17 $44.0^{\prime} \mathrm{N} 71^{\circ} 30.3^{\prime} \mathrm{W}$), Pedernales, Dominican Republic. Wetmorena haetiana: USNM 328858, AF 085612, 15.3 km S, 6.7 km E (by road) Cabral, Barahona, Dominican Republic. Barisia imbricata: MVZ 191048, AF 085613, 3070 m, Mex. Hwy 190, Mexico, Mexico. Gerrhonotus liocephalus: UTA-R-12225, AF 085614, 2377 m, El Tejocote, Oaxaca, Mexico. Abronia oaxacae: MVZ 144197, AF 085615, CerroSan Felipe, 20 km NNE of Oaxaca (by Hwy 175) to La Cumbre then 4 km NW (by dirt road), Oaxaca, Mexico. Mesaspis moreleti: MVZ 143472,

AF 085616, Elev. $9550 \mathrm{ft} ., 4.5 \mathrm{~km}$ by Road E of Todos Santos, Depto. Huehuetenango, Guatemala. Elgaria coerulea: MVZ-TP24365, AF 085617, San Pablo Ridge, Wildcat Canyon Road at Inspiration Point, Contra Costa Co., California. E. kingii: MVZ-RM1192, AF085618, 10.2 miles NE of Tanque Verde Road on Catalina Hwy (Mt. Lemmon Rd.), Pima Co., Arizona. E. paucicarinata: MVZ 191079, AF085619, La Laguna, Sierra de La Laguna, Baja California Sur, Mexico. E. multicarinata: MVZ 227733, AF 085620, Elev. 5700 ft., NE 1/4 Sec. 16, T. 13 S., R. 34 E., south fork of Oak Creek, 5.0 miles west (airline) of Independence, Inyo Co., California. E. panamintina: MVZ 227761, U82692 (Macey et al., 1997c), Elev. 2030 m, 10.1 miles E of Big Pine on Hwy 168, Inyo Co., California. Ophisaurus koellikeri: MVZ 178120, AF 085621, 10.1 km S of Kenitra ($34^{\circ} 16^{\prime} \mathrm{N} 6^{\circ} 36^{\prime}$ W) on P-29A, Kenitra, M orocco. Anguis fragilis: MVZ 219518, AF085622, 2 km SE of Babukal, also 53 km ENE of Dagomys ($43^{\circ} 40^{\prime} \mathrm{N} 39^{\circ}$ 38^{\prime} E) on road, Krasnodarsky Territory, Russia. Ophisaurus apodus: CAS 182911, AF085623, Tersko-Kumskaya Nizmennast, 3 km WNW of Voskresenskaya, which is approx. 25 km NNW of Gudermes ($43^{\circ} 21^{\prime} \mathrm{N}$ $46^{\circ} 06^{\prime}$ E), Schelkovskaya District, Chechenia Autonomous Republic, Russia. O. harti: MVZ 224111, AF085624, Elev. 900-1100 m, Tam Dao ($21^{\circ} 27^{\prime} \mathrm{N} 105^{\circ}$ 37' E), Vihn Yen District, Vihn Thu Province, Vietnam. O. attenuatus: MVZ-RM 10468, AF085625, 2.4 miles south of Weldon Springs at I-40 on Hwy 94, St. Charles Co., Missouri. O. ventralis: MVZ 137541, AF085626, Surf City, Pender Co., North Carolina.

Laboratory Protocols

Genomic DNA was extracted from liver using the Qiagen QIAamp tissue kit. Amplification of genomic DNA featured a denaturation at $94^{\circ} \mathrm{C}$ for 35 s , annealing at $50^{\circ} \mathrm{C}$ for 35 s , and extension at $70^{\circ} \mathrm{C}$ for 150 s with 4 s added to the extension per cycle, for 30 cycles. Negative control s were run for all amplifications. Amplified products were purified on 2.5% Nusieve GTG agarose gels and reamplified under similar conditions. Reamplified double-stranded products were purified on 2.5\% acrylamide gels (Maniatis et al., 1982). Template DNA was eluted from acrylamide passively over 3 days with Maniatis elution buffer (Maniatis et al., 1982). Cycle-sequencing reactions were run using the Promega fmol DNA-sequencing system with a denaturation at $95^{\circ} \mathrm{C}$ for 35 s , annealing at $45-60^{\circ} \mathrm{C}$ for 35 s , and extension at $70^{\circ} \mathrm{C}$ for 1 min for 30 cycles. Sequencing reactions were run on Long Ranger sequencing gels for $5-12 \mathrm{~h}$ at $38-40^{\circ} \mathrm{C}$.

Amplifications from genomic DNA used different primer combinations (Table 1): (1) L3002-H4419b, (2) L4160-H 4980, (3) L4437-H5934, (4) L3878-H 4980, (5) L3881-H5934, (6) L4221-H5934, and (7) L4437-H 6564. Both strands were sequenced using the primers in Table 1. Primer numbers refer to the 3 ' end on the

TABLE 1

Primers Used in This Study

Human positiona	Gene	Sequence ${ }^{\text {b }}$	Reference
L3002	16S	5'-TACGACCTCGATGTTGGATCAGG-3'	Macey et al., 1997a
L3428	ND1	5'-CGAAAAGGCCCAAACATTGTAGG-3'	This study
L3878	ND1	5'-GCCCCATTTGACCTCACAGAAGG-3'	Macey et al., 1998b
L3881	ND1	5'-TTTGACCTAACAGAAGGAGA-3'	Macey et al., 1997a
L4160	ND1	5'-CGATTCCGATATGACCARCT-3'	Kumazawa and Nishida, 1993
L4178	ND1	5'-CAACTAATACACCTACTATGAAA-3'	Macey et al., 1997a
L4221	tRNA ${ }^{\text {lle }}$	5'-AAGGATTACTTTGATAGAGT-3'	Macey et al., 1997a
H4419a	tRNA ${ }^{\text {met }}$	5'-GGTATGAGCCCAATTGCTT-3'	Macey et al., 1997a
H4419b	tRNA ${ }^{\text {met }}$	5'-GGTATGAGCCCGATAGCTT-3'	Macey et al., 1997a
L4437	tRNA ${ }^{\text {met }}$	5'-AAGCTTTCGGGCCCATACC-3'	Macey et al., 1997a
L4645	ND2	5'-ACAGAAGCCGCAACAAAATA-3'	Macey et al., 1997a
L4882	ND2	5'-TGACAAAAACTAGCCCC-3'	Schulte et al., 1998
H4980	ND2	5'-ATTTTTCGTAGTTGGGTTTGRTT-3'	Macey et al., 1997a
L5002	ND2	5'-AACCAAACCCAACTACGAAAAAT-3'	Macey et al., 1997a
H5540	tRNA ${ }^{\text {Trp }}$	5'-TTTAGGGCTTTGAAGGC-3'	Macey et al., 1997a
L5556a	tRNA ${ }^{\text {Trp }}$	5'-AAGAGCCTTCAAAGCCCTAAG-3'	Macey et al., 1997a
L5556b	tRNA ${ }^{\text {Trp }}$	5'-GCCTTCAAAGCCCTAAA-3'	Macey et al., 1997a
L5617	tRNA Ala	5'-AAAGTGTCTGAGTTGCATTCAG-3'	Macey et al., 1997a
L5638	tRNA Ala	5'-CTGAATGCAACTCAGACACTTT-3'	Macey et al., 1997a
H5692	tRNAAsn	5'-TTGGGTGTTTAGCTGTTAA-3'	Macey et al., 1997a
H5934a	COI	5'-AGRGTGCCAATGTCTTTGTGRTT-3'	Macey et al., 1997a
H5937a	COI	5'-GTGCCAATGTCTTTGTG-3'	Macey et al., 1997a
H5937b	COI	5'-AGGGTTCCGATATCTTTRTG-3'	This study
H6564	COI	5'-GGGTCTCСTССТССAGCTGGGTC-3'	Macey et al., 1998a

[^1]human mitochondrial genome (Anderson et al., 1981), where L and H correspond to light and heavy strands, respectively.

Phylogenetic Analysis

DNA sequences were aligned manually. Proteincoding sequences were translated to amino acids using MacClade(Maddison and Maddison, 1992) for confirmation of alignment. Transfer RNA secondary structure was determined manually using the criteria of Kumazawa and Nishida (1993) to ensure proper alignment (Macey and Verma, 1997). Positions of ambiguous alignment were excluded from phylogenetic analysis (see Results).

Phylogenetic trees were estimated using PAUP* beta version 4.0b1 (Swofford, 1998) with 100 heuristic searches featuring random addition of sequences. Bootstrap resampling was used to assess support for individual nodes with 1000 bootstrap replicates using 100 heuristic searches with random addition of sequences per replicate. Decay indices (="branch support" of Bremer, 1994) were calculated for all internal branches of the tree using two methods. First, 100 heuristic searches with random addition of sequences, which retained suboptimal trees, were run for nodes with decay indices of 1 to 15 . For nodes with decay indices above 15 , a phylogenetic topol ogy containing the single
node in question was constructed using MacClade (Maddison and Maddison, 1992) and analyzed as a constraint in PAUP* beta version 4.0b1 (Swofford, 1998) with 100 heuristic searches featuring random addition of sequences. In these searches, trees that did not contain the imposed constraint were retained. All searches conducted on allozymic data were exhaustive.

Wilcoxon signed-ranks tests (Felsenstein, 1985; Templeton, 1983) were used to examine statistical significance of the shortest tree relative to alternative hypotheses. This test asks whether the most parsimonious tree is significantly shorter than an alternative or whether their differences in length can be attributed to chance alone (Larson, 1998). Wilcoxon signed-ranks tests were conducted both as one- and two-tailed tests. Felsenstein (1985) showed that one-tailed probabilities are close to the exact probabilities for this test but not always conservative, whereas the two-tailed test is always conservative. Tests were conducted using PAUP* beta version 4.0b1 (Swofford, 1998), which incorporates a correction for tied ranks.

Alternative phylogenetic hypotheses were tested using the most parsimonious phylogenetic topol ogies compatible with them. To find the most parsimonious tree(s) compatible with a particular phylogenetic hypothesis, phylogenetic topologies were constructed us-

Mesaspis

E. coerulea
E. kingii
E. paucicarinata
E. multicarinata
E. panamintina
o. koellikeri

Anguis
O. apodus
O. harti
O. attenuatus
O. ventralis

461-560
Heloderma
Varamus
Shinisaurus
Xenosaurus
A. geronimensis
A. pulchra

Celestus
D. bilobatus
D. pleei

Ophiodes
Sauresia
Wetmorena
Barisia
Gerrhonotus
Abronia
Mesaspis
E. coerulea
E. kingii
E. paucicarinata

E multicarinata
E. panamintina
O. koellikeri

Anguis
O. apodus
O. harti
O. attenuatus
O. ventralis

561-660

Heloderma
Varanus
Shinisaurus
Xenosaurus
A. geronimensis
A. pulchra

Celestus
D. bilobatus
D. pleei

Ophiodes
Sauresia
Wetmorena
Barisia
Gerrhonotus
Abronia
Mesaspis
E. coerulea
E. kingii
E. paucicarinata
E. multicarinata
E. panamintina
O. koellikeri

Anguis
o. apodus
O. harti
o. attenuatus
O. ventralis

ND1 ND1STP ILE
 CTCTCCGGACTACCACCAATAATTACA--TA--...........-----GGAGATATGCCTGAACTA--AAGGGCTACTPTGATAGAGTAAAAAATAGGGAC CTCGGAGGACTACCTCCCCTACCCAAC---T----------------GGAAATGTGCCTGAACTA--AAGGGCTATTTTGATAGAATAGACCATAGGAAC ATGTCAGGACTTCCCCCAAAC--------AGACCCA----------GGAAATATGCCTGAAACT--AAGGATTACTTTGATAGAGTACAC-ATAGGGGT CICGCAGGCCICCCCCCACAA---------TAATCCTA---------GGAAATGIGCCTGAATTA--AAGGACTACTITGATAGAGTAACTAACAGAGGT CTATCAGGAATTCCACCAATC---------TAATGCCCAA--------GGAACTGTGCCTGAACTA--AAGGATTACTTTGATATAATGAACAATAGAGGT СТАTCAGCAATCCCCCCAATC--------TAACACTAAA-------GGAACTGTGCCTGAACTA--AAGGGTTACTMTGATATAATAAACAATAGAGGT TTAGCAAGCATCCCCCCAACACACTCCCATTAAC------------GGAAATGTGCCTGAATTA--AAGGACTACTTTGGATAGAGTAAAAAATAGAGGT TCATCTAGCATCCCCCCTATG--------TAGCA------------GGAAATGTGCCCGAGTATT--AAGGATTACTTTGATAGAGTAAACAACAGGGAG СITTCAATCATTCCTCCAACC--------TAACC------------GGAACTGTGCCTGAACA---AAGGGTACTTTGATAGAGTAAATAATAGAGGA
 CTATCATGCATCCCACCAACA--------TAAACTTTACCCAGC--GGAAATGTGCCCGAACATT-AAGGATTACTTTGATAGAGTAAACAACAGAGAC CTATCATGCATTCCACCAACA---------TAAACTITCACCCAAC-GGAAATGTGCCCGAGTATT-AAGGATTACTTTGATAGAGTAAACAACAGAGAC CTCTCAGGAATCCCCCCAATCCTIGCT---AGAGC------------GGAAGCGTGCCTGAACA---AAGGACTATITTGATAGAATAGATAACAGAGGC СTATCTGGAATCCCACCATCATCAACC---AGAC--..-.-----GGAAGCGTGCCTGAACAA--AAGGACTATTTTGATAGAATAGAC-ATAGAGGC TTATCAGGAACCCCCCCAATATTTAAC---TAAAC------------GGAAATGTGCCTGAACAA--AAGGACTATTTTGGATAGAATAGACAATAGAGGT СTATCAGGAATTCCCCCAATATCTACT---TAAAC-.........-.-.-.-GGAAGCGTGCCTGAATAA--AAGGACTATTTTGATAGAATAGATAATAGAGAC TTATCCGGATCCCCCCCAACAAGC-----TAGAA--..........--GGAAGTGTGCCTGAACTA--AAGGACTACTTTGGATAGAATAGATAATAGAGGI TrATCGGGAACCCCTCCAACAAGC------TAAAC------------GGAAGIGTGCCTGAACTA--AAGGACTACTTTTGATAGAATAGACAACAGAGGT СТАTCAGGAGCCCCCCCAACAAAC-----TAGAC------------GGAGGGTGCCTGAACTA--AAGGACTACTTTGATAGAATAGACAATAGAGGC TTATCAGGAGCCCCTCCAACAAAC------TAGAC------------GGAAGTGTGCCTGAACTA--AAGGGCTACTTTGATAGAATAGACAACAGAGGI TTATCAGGAACCCCTCCAACAAAC------TAGAC-----------GGAAGTGTGCCTGAACTA--AAGGACTACCTTGATAGAATAGACAACAGAGGT TTACTTGGGGTCCCCCCTGTC--------TAACCCACCAA------GGAAAIGTGCCIGAACTA--AAGGGCTACTTTGATAGAGTAAACAACAGAGGT
 CTACTGGGCACCCCACCAGTATGACCCGCCTA----------------GGAAGCGTGCCCGAATCATAAAGGATTACCTTGATAGAGTAAACAACAGGGGT CTACTTGGAATCCCACCAGCT--------TAACCAAGTTAA-----GGAATCGTGCCTGAATTT--AGGGGTTATTGTGATAGAATAAACTACATAGGT CTACTAGGGGTCCCACCAGTC--------TAACCCACCCCACCAA-GGAAACGTGCCTGAATTACAAAGGATTATTGIGATAGAATAAACTACAGAGGT TIGCTAGGAACCCCACCAATT--------TAACCCACCCTCGCCAAGGAAACGTGCCCGAATCATAAAGGACTACTGTGATAGAGTAAACTACAGAGGT ILEGIN

$$
\lll \ll \text { T. . . } \lll<A C . \text { COD. . } \lll A C . \lll D .
$$

$$
\lll<\text { D. } \leqslant \lll \lll \text { AAA } \gg
$$

TTAGC-..--CCCCTTATCTCCT-TAAAGAGACAGGATTTGAACCTGCACCAAAAAACTCAAAATTTCATGTACTTCCT--TTATACTACCCTATAATA AACAC-----TTCCTCATTTCCCCTAGAAA-ACAGGACTCGAACCTGTACTATAAAACCCAAAATTTTATGTACTTCCA--TTATACCAACTTCTAGTG TAAAAT----СTCСTTATTTCCT-TAGAAAAACAGGATTTGAACCTGCACCTTGGGACTCAAAACCCCTCGTACTCCCA--TTTTACTACTTTCTAGTA TTAAAC----CCTCTCACTTCCT-TAGAAAGACGGGAATTGAACCCGCACTAAAAAACTCAAAATCTTCTGCACGCCCA--TTATACTACTTTCTAGTA TATAAT-----ССTCTCAGCTCCA-TAGAAAGACAGGAATTGAACCTGAACTTAAAAACTCAAATCTTCTCGTACTTCCA--TTATACTACTCCCTAGTA TACAGT-…-CCTCTCAGCTCCA-TAGAAAAACAGGAAATGAACCTGTACTTAAAAACTCAAAATTCTTCGTACTTCCA--TTATACTACCTCCTAGTA TAAAAT-----CCCCTCAITTCC--TAGAAAAACAGGAGCCGAACCTGCACTGAAAAACTCAAAATTTTTTGTACTT-CA--TTATACTATTTTTCTAGTA TAACA----CCCCTCATTTCC---TAGAAAAACAGGACATGAACCTGCACCAAAAGACTCAAAATCTTCCGTACAA-CA--TTATACTATTTTCTAGTA CACCAC-----CCTCTCATTTCC--TAGGAAAACGGGAATTGAACCCACACTAAAAAACTCAAAATTTTTCGTACTT-C---TTATACTACCTCCTAGTA АТТААСТСААСССТСТСАСТTCC--TAGAAGAACAGGATTTGAACCCGCACTAAAAAACTCAAAATCTCTTGTACTC-C---TTATACTATCTCCTAGTA TAAAA------ССTCTCATTTCC--TAGAAAAACAGGACTCGAACCTGCACATTAAAACTCAAAACTITACGTACTT-CA--TTATACTACCCTCTAGTA TGAAA-----TCTCTCATTTCC--TAGAAAAACAGGACTCGAACCTGCACACTAAAACTCAAAACTTTATGTACTT-CA--TTATACTACCCTCTAGTA TATAAA----ССТСТСАСТTCC--TAGAAAGACAGGAATTGAACCTGCACTAAAAAACTCAAAATCTTCTGTACTCCCA--TTATACTACTTCCTAGTA САСТАТ-----ССТСТСАСТTCC--TAGAAAGACAGGAGTTGAACCTGCACAAAAAAACTCAAAATCTTCTGCACTTCCA--TTATACTACTTCCTAGTA ATTAGT-----CCTCTCACTTCC--TAGAAAGACAGGAATTGAACCTGCACAAAAAAACTCAAAATTTTCTGCACTTCCA--TTATACTACTTCCTAATA CACAA------TCTCTCACTTCC--TAGAAAGACAGGAATTGAACCTGCACAAAAAAACTCAAAATCTTCTGCACTTCCA--TTATACTACTTCCTAATA TAAAAT-----ССССTCACTTCC--TAGAAAGACAGGAATTGAACCTGCACAAAAAAACTCAAAATCTTCTGCACTACCA--TTATACTACTTCCTAATA TAAAAT-----CCTCTCACTTCC--TAGAAAGACAGGAATTGAACCTGCACCAGAAAACTCAAAATCTTCTGCACTCCCA--TTACACTACTTCCTAGTA TAAAAT-----ССТСTCACTTCC--TAGAAAGACAGGAATTGAACCTGCACCAAAAAACTCAAAATCTTCTGCACTCCCA--CTATACTACTTCCTAGTA TAAAAT-..--CCTCTCGCTTCC--TAGAAAGACAGGAATTGAACCIGCACCAAAAAACTCAAAATCTTCIGCACTCCCA--TTATACTACTICCTAGTA TAAAAT----ССTCTCACTTCC--TAGAAAGACAGGAATTGAACCTGCACCAAAAAACTCAAAATCTTCTGTACTCCCA--TTATACTACTTCCTAGTA TAAAAT-----ССТСТСGСTTCCC-TAGAAAAACAGGAATTGAACCTGAACCAGAAAACTCAAAACTTTCTGГACTCCCA--СTATACTATTTCCTAATA TCAAAT-----CCTCTCGCTTCCT-TAGAAAAACAGGAATTGAACCTGCACCAGAAAACCCAAAATTTCCTGTACTCCCA--TTATACTATTTCCTAGTA TTAAAC-----CCCCTCGTTTCCC-TAGAAAAGCAGGAGTTGAACCTGTGCTAGAAAACCCAAAATTTCCTGTACTCCCA--TTATACTACTTCCTAGTA TAAAAC-----CCTATCGCTTCCT-TAGAAAAACAGGAATIGAACCIGCACCAGAGAGCTCAAAACCCCCTGTACTCCCA--СTATACTACTHCCTAGTA TAAAAT-..--CCTCTCGCTTCCC-TAGGAAAACAGGAATCGAACCTGCACCAGAAAACTCAAAATTCTCTGTACTCCCATTTTTATACTTCTTCCTAGTA TAAAAT----_CCTCTCGCTTCCT-TAGGAAAACAGGAATCGAACCTGCACTAGAAAACTCAAAACTTCCTGTACTCCCATCTTATACTTCTTCCTAGTA METND2
AGATCAGCTAAACAAGCTCTCGGGCCCATACCCCGAAAATGTTGGTTCGAAACCCGCTCTTATTAATGAATCCCATAATTACAATAATCTTAATCTTCAG AGGTCAGCTAACCAAGCTATCGGGCCCATACCCCGAAAATGTCGGTTACAAACCTTCCCTCACTAATCAACCCCCTCATTAACTTCACCCTACTTTTCAG AAGTCAGCTAATTAAGCTTTTGGGCCCATACCCCAAAAATGTTGGTTTAACACCATCCTCTACTAATGAACCCATACATCCTAACACTACTCATGTCCAG AGGTCAGCTAAAAAAGCTTTTCGGGCCCATACCCCGAAAATGTTGGTTTAAACCCCTCCCATACTAATGAGCCCAACTACCCAATCCCTCCTCCTCTCCAA AAGTCAGCTAATTAAGCTMTTGGGCCCATACCCCAAAAATGTTGGTTTAAATCCTTCCTTAGCCAATGAGCCCATCAACCACCACAATCCTAATCCTCAA AAGTCAGCTAACTAAGCTTTTGGGCCCATACCCCAAAAATGTTGGTTTAAACCCTTCCTTCACCAATGAGCCCGTTAATCACCACAATCTTAATACTTAA AAGTCAGCTAATTAAGCTTTTGGGCCCATACCCCAAAAATGTTGGTTTAAACCCCTCCTTTACCAATAAACCCAACAATTATCTCGATCCTCTTATCCAA AAGTCAGCTAATTAAGCTCTTGGGCCCATACCCCGAAAATGTCGGITTLAAACCCCTCCTTTACCAATGAACCCAATAАTCGCCTCCATCCTAATTATAAA AAGTCAGCTAAACAAGCTTTCAGGCCCATACCCTGAAAATGTCGGTPTAAATCCTHCCTCTACTAATGAACCCAACTATTPACCACCATCCTAATCTYTAA. AAGTCAGCTAAATAAGCTCTCAGGCCCATACCCCGAAAATGTTGGTTTAAACCCTTССТСТАСТААТGAGССССАСААТСАТСАССАТСТТТСТССТСАА AAGTAAGCTAAACAAGCTTTCAGGCCCATACCCCGAAAATGTCGGTTAAAACCCCTCCTTTACCAATGAGCCCCACCATCCTAACCATTCTAATAACCAA AAGTAAGCTAAACAAGCTTTCAGGCCCATACCCCGAAAATGTCGGTTAAAACCCTTCCTTTACCAATGAGCCCTACCATCTTAACCATTCTTATAATTAA AAGTCAGCTAAATAAGCTCTCGGGCCCATACCCCGAAAATGTTGGTTAAAA-CCTTCCTTTATCAATGAGCCCAATTATTACCTCTATCCTTATCCTGAA AAGTCAGCTAAATAAGCTTTCGGGCCCATACCCCGAACATGTTGGTTCAAACCCCTCCTTTATCGATGAGCCCAACAATTPACCTCAATCCTAATTCTTAA AAGTCAGCTAAATAAGCTTTCGGGCCCATACCCCGAAAATGTTGGTTTAAATCCTTCCTTTATCAATGAGCCCGATAATCACCTCAATCCTAATCCTAAA. AAGTCAGCTAAATAAGCTTTCGGGCCCATACCCCGAAAATGTTGGTTTAAACCCCTCCTTTATCAATGAGCCCAATAATTACCTCAATTCTAATTCTTAA AAGTCAGCTAAATAAGCTTTCGGGCCCATACCCCGAAAATGTTGGTTTAAACCCCTCCTTTATCAATGAGCCCAATAATTACTTCAATCCTAATCCTCAA AAGTCAGCTAAACAAGCTTTCAGGCCCATACCCIGAAAATGTCGGTTCAAACCCCTCCTTTACCAATGAGTCCAATAATTACTTCAATTCTAATCCTCAA AAGTCAGCTAAATAAGCTTTCGGGCCATACCCCGAAAATGTCGGTTTAAACCCCTCCTTHATCAATGAGCCCAATAATTACTGCAATTCTAATCCTCAA AAGTCAGCTAAATAAGCTTTCGGGCCCATACCCCGAAAATGTTGGTTTAAACCCCTCCTTTATCAATGAGCCCGATAATTACTTCAATCCTAATCCTCAA AAGTCAGCTAAATAAGCTTTCGGGCCCATACCCCGAAAATGTTGGTTTAAACCCCTCCTTTATCAATGAGCCCAATAATTACTTCAATCCTAATCCTCAA AAGTCAGCTAAACAAGCTCTCGGGCCCATACCCCGAAAATGTTGGTTTAAACCCCTCCTTTATGAATGAGCCCTACAATCGCCTCAATTCTGATCACCAA AAGTCAGCTAAATAAGCTCTCGGGCCCATACCCCGAAAATGTTGGTTTAAACCCCTCCTTTATCAATGAGCCCGATAATTACCTCAATCTTAATTCTTAG AAGTCAGCTAAAAAAGCTCTCGGGCCCATACCCCGAAAATGTTGGTTTAAACCCCTCCTTTACCAATGAGTCCCACAGTCATCTCAATCTTAATCCTCAA AAGTCAGCTAAACAAGCTCTCGGGCCCATACCCCGAAAATGTCGGTTTAAATCCCTCCTTTATCAATGAGCCCAATAATCACCCAAATCTTAATCCTCAA AAGTCAGCTAAATAAGCTCTCGGGCCCATACCCCGAAAATGTTGGTTTAAACCCCTCCTTTACCAATGAGCCCAATAATCACCTCCATCCTGTTCCTAAA AAGTCAGCTAAACAAGCTCTCGGGCCATACCCCGAAAATGTTGGTTTAAACCCCTCCTTTACCAATGAGCCCCACAATTACTTCAATCCTGTTCCTTAA

FIG. 1. Length-variable regions among the 2101 aligned mitochondrial DNA sequences as used in the phylogenetic analysis. Eleven regions totaling 100 positions are excluded from the analysis and are underlined. Positions 1-360 and 661-1600 from the ND1 and ND2 genes, respectively, are not shown because this region had no length variation except for a single codon deletion in Hel oderma at positions 211-213. Sequences are presented as light-strand sequence and tRNA secondary structure is designated above the sequence. Stems are indicated by arrows in the direction encoded: AA, amino acid-acceptor stem; D, dihydrouridine stem; AC, anticodon stem; and T, T ψC stem. The tRNA anticodons are designated COD. Asterisks indi cate the unpaired 3^{\prime} tRNA position 73 . Periods indi cate bases located outside stem regions; 1 depicts the first codon position of protein-coding sequences. STP indicates stop codons.

1601-1700 Heloderma Varanus Shinisaurus
Xenosaurus
A. geronimensis
A. pulchra

Celestus
D. bilobatus
D. pleei

Ophiodes
Sauresia
Wetmorena
Barisia
Gerrhonotus
Abronia
Mesaspis
E. coertulea
E. kingii
E. paucicarinata
E. multicarinata
E. panamintina
O. koellikeri

Anguis
O. apodus
O. harti
O. attenuatus
O. ventralis

1701-1800
Heloderma
Varanus
Shinisaurus

Xenosaurus

A. geronimensis
A. pulchra

Celestus
D. bilobatus
D. pleei

Ophiodes
Sauresia
Wetmorena
Barisia
Gerrhonotus
Abronia
Mesaspis
E. coerulea
E. kingii
E. paucicarinata
E. multicarinata
E. panamintina
O. koellikeri

Anguis
O. apodus
O. harti
O. attenuatus
O. ventralis
1801-1900
Heloderma
Varanus
Shinisaurus
Shinisaurus
A. geronimensis
A. pulchra

Celestus
D. bilobatus
D. pleei

Ophiodes
Sauresia
Wetmorena
Barisia
Gerrhonotus
Abronia
Mesaspis
E. coerulea
E. kingii
E. paucicarinata
E. multicarinata
E. panamintina
O. koellikeri

Anguis
O. apodus
O. harti
O. attenuatus
O. ventralis

ND2 Continued ND2STP TRP
1..1..1.1..1..1..1.1..1..1.1..1..1..1..1..1..1..1..1..1..1.... AA>>>>>. $D \ggg \ldots . . \ldots . .$. СТАAССАСGACCTTTCСАСTСТССАTTATAATAACACCTCTGATACCCATCATTCAGCTATAAC--AGAAATTMAGGATCACCATTA--AACCGAGGACC
 TTAACAATAACAAGCCCATTAGCCCTCTTAATAATCCCAATTACACCCTTTATCATCCCATAAC--AGAAGTTTAAGCTAACAA---- AACTAAGAGCC ATAACAACAGGAATCTCATTATCACTACTIGCCCTCCCACTAATACCCCTAGTACTG---TAAC--AGAAACTTAAACTTAACCCCTAAAGCTAAGAACC СТАTСАAСAGCACTTCCCCTGTCATTAATAATAACACCCCTAATACCGCTTATCATACCATA----AGAGACTTAGGATAACAA-----AACCAAGAGCC СТАТСААСАGСАСТССССАТСТСАСТАATAGСАСТАССАСТАATAССGСТСATCAAACCCTA----AGGGGCHTAGGATAATCITIA---AACCAAGAGCC TTATCAACAATAACCCСССTCGTACTAGCCTCACTACCCCTATTACCCCTAATGAAACCATAAC--AGAAACTTAAGTTACCACTA-- AACTAAGAACC ATATCCATAGCACTAGTACCCACACTTACTGCCCTTCCACTCGCACCACTAATTATACCCTAAC--AGAAACTTAAGTTACATTA----AACTAAGGGCC AAAACCACTACTATAACCATAGCACTACTPACCCTACCACTACTACCAATAATAAAACCAT----AGAAACTTAAGTTAACAA----AACTAAGAGCC AAAGCCGCACCTATCACTATAGCATTACTAACCTTACCCCTACTACCAATAATAAAACCAT-----AGAAACTTAAGTTIAACAA-----AACTAAGGACC TTATCTACAACCTIGCCATTATCAATAATCATACTACCACTGCTACCCATAATAAAACCATAAC--AGAAACTTAAGTTACGCA-----AACTAAGAGCC TTATCAATAACCCTGCCATTATCAATAATTATACTACCACTACTACCССTGATGAAACCATAAC--AGAAACTTAAGTTACACA ---- - AACTAAGAGCC CTTTCAGCAACACTGCCAATCTCAATTATAGGATTAACCATCACACCACTAATAAAACCATAAC--AGAAATTTAGGTTACATTA----AACCAAGAGCC TTATCATCAACCCTCССАATATCСGTTTTAGGACTAACCTTAACCCCACTAATTAAACCATAAC--AGAAATTTAGGTTACATTA----AACCAAGGACC СТTTСААСААССАТАССАССАТССАТTATGGGGCTAACTATTGCACCACTAATTAAACCATAAC--AGAAATTTAGGTTACATTA----AACCAAGGGCC CTTTCAACAACCCTCCCAACATCCATTATAGGACTAACCATTGCACCACTAATAAAACCATAAC--AGAAATTTAGGTTACACTA--- AACCAAGAGCC СТСТСААТАAСССТСССССТАТССАТСАTAGGACTACCTCTCATACCACTAATAAAACCATAAC--AGAAATTTAGGTMACATA----AACCAAGGACC СТСТСААТАAСССТССССАТАТССАТСАТАGGACTACCCCTCATACCACTAATAAAACCATAAC--AGAAATTTAGGITACATAA----AACCCAGGACC СTCTCAGTAACCСTCСССАTATCCATCATAGGACTACCTCTCATACCACTAATAAAACCATAAC--AGAAATTTAGGITACATAA----AACCAAGGACC СТСТСААТААСССТССССАТАТССАTCATAGGACTACCССTCGTACCACTAATAAAACCATAAC--AGAAATTTAGGTTACATAA----AACCAAGGGCC СTCTCAACAACCCTCCCAATATCCATCATAGGACTACCTCTCGTACCACTAATAAAACCATAAC--AGAAATTTAGGTTACATA-----AACCAAGGGCC СТАТСААССАСССТТССАССАТССАССАТААССТТАССАСТАAСССААСТАATAAAACCATAGCACAGAAATTTAGGCTAATACAA---AACCAAGGGCC СTGTCAATCGCCCTTCСTCСGTCTATCTTAGCCCTCССССТАAССССАСТАATAAAACCCTAATACAGAAATTTAAGTTAACGCCA---AACTAAGAGCC СTATCTACTACCCTCСССАСАTCAATCCTAGСССТСССАTTAACCCCGСTACTAAAACCCTAACACAGAAATTTAAGTTAACGCCA---AACTAGGAGCC CTATCGACCACCCTTCCCCTATCCATACTAGCCTTGCCACTAACACCACTAATCAAACCCTAACACAGAAATTTAGGTTAATACTA---AACCAAGGACC СТАССААССАСССТСССАССАТСААТССTGGСTСTGССАTТАAССССССТАTTAAAACCATAGCACAGAAATTTAGGTJAATACCA---AACCGAGGGCC СТАТССАСТАСССТССССССАТССАТССТАGСАСРАССССТААССССССТААТGAAACCGTAACACAGAAATTTAGGTMAACACCA---AACCAAGGACC TRP ALA

TTCAAAGCCCTAAACAAGAGTAATA----CTCTTAATTTCTGG-AAAGACCTATAAAACTTTAATTTATATCCTCTAAATGCAACTTAGATACTPTAAT TTCAAAGCCCTAAAAAAGAGCACAAAC---CTCTTAATITCTG--CAAGACCTATAAAACTCTAATCTATATCTCCTGAATGCAACTCAGACACTTTCAT TTCAAAGTCCTAACTAGGAGTGAAACC---CTCCTAACTTCTGCTTAAAGCCCGTAGAA-TTTAAACTACATCATCTGAATGCAACCCAGATACTTTAAT TTCAAAGTTCTAGATAAGAGTGAAACC-- CTCTTAGTTTCTGC-TTAGGCCTGTAAAACTCTAATTTACATCTTCTGAATGCAACCCAGACACTITAAT TTCAAAGCCCTAAATAGGGGTCACCAAAAACCCCTAGTCCCTG---AAAACCTGTAAAACTTTAATCTACATCTTCTGACTGCAACTCAGACACTTHCAT TTCAAAACTCTAAATAAGGGCCCATAA---CCCTTAGCCCCTG--AAAAACCTGTAGAACTCTGATCTACATCTTCTGACTGCAATCCAGACACTMTYAT TTCAAAGTTCTAAACAGGGACTAAA-․--CCCCTAGTTCTGCTTAAGACCTGTAAAACTCTAATTTACATCACATGACTGCAACTCAAGCACTTTAAT TTCAAAGCCCTAAACAGGACTTCACC---ACCCTAGTTTCTGC-CAAGATCTGTAAAACTCTAATCCACATCCTATGAATGCAACTCATACGCTPTAAT TTCAAAGCCCTAAATAGGCACCCACCA--CCCCTAGTTTCTGA-TAAGACCTGTAAAACTCTAAAATACATCCTCTGAATGCAACTCAGACACTTTAAT TTCAAAGCCCTAAATAGGATACAACC----AACCTAGTTTCTGA-TAAGACCTATAAAACTCTAATTTACATTATCTGAATGCAACTCAAACGCTTTCAT TTCAAAACTCTAAACAGGGACACA------ACCCTAGTTTCTGCTCAAGACTTGTAAAACTCTAATTTACATCCAATGACTGCAACTCAAACACTTTAAT TTCAAAACTCTAAACAGGGATACA-----ACCCTAGTTTCTGCTCAAGACTTGTAAAACTCTAATTTACATCTAATGATTGCAACTCAAACACTTTAAT TTCAAAGCCCTAAACAAGGAACAC-----TCCTTAATTTCTGA-TAAGATTTGTAAAA-TCTAATCГACATCTTCTGACTGCAACTCAGACACTTTAAT TTCAAAGCCCTAAACAAGGAAAAC-----TCCTTAATTTCTGA-CAAGATTTGTAAAA-TCTAATCTACATCTTCTGACTGCAACTCAGACACITTAAT TTCAAAGCCCTAAACAAGGAAAAC-----TCCTPAATTTCTGA-CAAGATTTGTAAAA-TCTAATCTACATCTTCTGACTGCAACTCAGACACITITAAT TTCAAAGCTCTTAACAAGGAATAAC-----TCCTTAATTTCTGA-TAAGATTTGTAAAA-TCTAATCTACATCTTCTGACTGCAACTCAGACACTPTAATT THCAAAGCCCTAAACAAGGAATAAC - - --TCCTTAATTTCTGA-TAAGACTTGTAAGTATTTAACCTACATCTTCTGACTGCAACCCAGACGCTTTAAT TTCAAAGCCCTAAACAAGGAACAC-----TCCITAATITCTGA-TAAGATCTGTAAGAATTTAACCIACATCTTCIGACTGCAACCCAGACACTTTAAT TTCAAAGCCCTAAACAAGGAACAAC---TCCTTAATTMCTGA-TAAAGTCTGTAAGAATTTAACCTACATCTTCTGACTGCAACCCAGACACTTTAAT TTCAAAGCCCTAAACAAGGAACAAC----TCCTTAATTTCTGA-TAAGATCTGTAAGAATTTAACCTACATCTTCTGACTGCAACCCAGACACTTTAAT TTCAAAGCCCTAAACAAGGAACAC----TCCTTAATTTCTGA-TAAGATCTGTAAGAATTTAACCTACATCTTCTGACTGCAACCCAGACACTTTIAT TTCAAAGCCCГAAATAGAGAATAAACC---CCTCTAATTTCTGCTTAAGATCTGTAAAACTCTAATCTACATATTCTGACTGCAACCCAGATGCTITAAT TTCAAAGCCCTAAATAGAGAATAAACC---CCTCTAATTTCTGCTTAAGACCTGTAAAACTCTAATCTACATACTCTGACTGCAACCCAGATGCTTTAAT TTCAAAGCCCCAAATAGGGAATAAGCC--CCCCTAATTTCTGCCTAAGACCTGTAAAATTCTAATTTACATATTCTGACTGCAACCCAGATGCTTTAAT TTCAAAGTCCTAAATAGAGAGTAAGCC---CCTCTAACTTCTGCCTAAGACCTGTAAAACTCTAATCTACATATTCTGACTGCAACCCAGATGCTTTAAC TTCAAAGCCCTAAATAGAGAATAAACT---TCCCTAATTTCTGATCAAGACCTGTAAAACTCTAGTCTACATATTCTGGCIGCAACCCAGACGCTPTAAT TTCAAAGCCCTAAATAGAGAATAAACC---TCCCTAATTTCTGACCAAGACCTGTAAAACTCTAGTCTACATATTCTGACTGCAACCCAGACGCTTTAAT ALA ASN ASNOL
. \lll D. $\lll \ll$ AA. . $* \lll \ll$ AA $\lll<T$.<<<< TAAGCTAAAGCCTTC-CTAGATAGACGGGCCTCGATCCCGTAACAAACTAATPAACAGCTAGCCGCCCAAACCAGAGGGCTTCTATCTA---CTTCTCCC TAAGCTAGAACTTA--CTAGACAAACGGGCCTCGATCCCGTGACAAATTAATTAACAGCTAATTACCCTAACCAGCGGGCTTCTATCTA---CTTCTCCC TAAGCTAAAGCCTGCCCTAAATAAACGGGCCTCGATCCCGTAAAATATTAATPAACAACTAACCGCTCTATCCAGCGAGCTTTTATCTA---CTTCTCCC TAAGCTAAGGCCTTA-CTAGACAAACGGGCCTCGATCCCGTAAACAATTAATTAACAGCTAAACACCCTATCCAGCGAGCTTTTGCCTA---CTTCTCCC TAAGCTAAGGCCTTA CTAGACAAACGGGCCTCGATCCCGTAAACAATTAATTAACAGCTAAACACTCTATCCAGCGAGCTTHTGCCTA---CTICTCCC TAAGCTAAGGCCTTA-CTAGACAAACGGGCCTCGATCCCGTAAACAATTAATTAACAGCTAATTACTCAATCCAGCGAGCTTCTGCCPA ---CTTCTCCC TAAGCTAAAACCTC--CTAGACAAACGGGCCTCGATCCCGTAAACAATTAATTAACAGCTAACCACTCAATCCAGCGAGCTRTTGCCTA---CTICTCCC TAAGCTAAAGCCITA-CTAGATAAACGGGCCTCGATCCCATAAATAATTAATTAACAGCTAAACACTCAATCCAGCGAGCTTTTATCTA---CTTCTCCC TAAGCTAAAGCCTCC-CTAGACAAACGGGCCTCGATCCCATAAATAATTAATTAACAGCTAAACACTCAATCCAGCGAGCTMTTGCCTAA--CTMCTCCC TAAGCTAAAGCCTCT-CTAGACAAATGGGCCTCGATCCCATAAAAAATTAATTAACAGCTAATCACCCCAACCAGCGGGCTTTTATCTA--- CTTCTCCC TAAGCTAAAGCCTCT-CTAGACAAACGGGCCTCGATCCCATAAAAAATTAATTAACAGCTAATTACCCTATCCAGCGGGCTTTTGTCTA---CTTCTCCC TAAGCTAAAACCTMA-CTAGATAGACGGGCCTCGATCCCGTAAACAATPAATTAACAGCTAACCACTCTATCCAGCGAGCTTCTATCTA--CTMCTCCC TAAGCTAAAACCTCA-CTAGACAGACGGGCCTCGATCCCGTAAACAATTAATTAACAGCTAATCACTCAATCCAGCGAGCTTCTATCTA---CTWCTCCC TAAGCTAAAACCTMA-CTAGACAGACGGGCCTMGATCCCGTAAATAATTAATTAACAGCTAATCACTCAATCCAGCGAGCTTCTATCTA---CTTCTCCC TAAGCTAAAACCTTT-CTAGACAGACGGGCCTTGATCCCGTAAATAATTAATTAACAGCTAATCACTCAATCCAGCGAGCTTCTATCTA---CTTCTCCC TAAACTAAAACCTTA-CTAGACAGACGGGCCTCGATCCCGTAAACAATTAATTAACAGCTAATCACTCAATCCAGTGAGCTTCTATCTA---CTICTCCC TAAGCTAAAACCTCA-CTAGACAGACGGGCCTCGATCCCGTAAACAATTAATTAACAGCTAATCACTCAATCCAGTGAGCTTCTATCTA---CTTCTCCC TAAGCTAAAACCTTA-CTAGACAGACGGGCCTCGATCCCGTAAACAATTAATTAACAGCTAATCACTCAATCCAGTGAGCTTCTATCTA---CTICTCCC TAAGCTAAAACCTCA-CTAGACAGACGGGCCTCGATCCCGTAAACAATTAATTAACAGCTAATCACTCAATCCAGCGAGCTTCTATCTA---CTTCTCCC TAAGCTAAAACCTCA-CTAGACAGACGGGCCTCGATCCCGTAAACAGTTAATTAACAGCTAATCACTCAATCCAGCGAGCTTCTATCTA---CTTCTCCC TAAGCTAAGACCCTA-CTAGATACACGGGCCTCGATCCCGTAAAAAATTAATTAACAGCTAATCACTCTACCCAGCGAGCTTCTATCTACITCTTCTCCC TAAGCTAAGGCCTTA-CTAGATACACGGGCCTTGATCCCGTAAACAATTAATTAACAGCTAATCACTCTATCCAGCGAGCTTCTATCTATCTCTTCTCCC TAAGCTAAAGCCTTA-CTAGATACACGGGCCTTGATCCCGTAAACAATTAATTAACAGCTAATCACTCCATCCAGCGAGCTTCTATCTACCTCTTCTCCC TAAGCTAAGGCCTTC-CTAGATACACGGGCCTCGATCCCGTAAACAACIAATTAACAGCTAGTCACTCTATCCAGCGAGCTTCTATCTA---CTTCTCCC TAAGCTAAGGCCITA-CTAGATACACGGGCCTCGATCCCGTAAACAATTAATTAACAGCTAATCACTCTATCCAGCGAGCITCTATCTA---CTTCTCCO TAAGCTAAGGCCTTA-CTAGATACACGGGCCTCGATCCCGTAAACAATTAATTAACAGCTAATCACTCTACCCAGCGAGCTHGTATCTA---CTTCTCCC

1901-2000
Heloderma
Varanus
Shinisaurus
Xenosaurus
A. geronimensis
A. pulchra

Celestus
D. bilobatus
D. pleei

Ophiodes
Sauresia
Wetmorena
Barisia
Gerrhonotus
Abronia
Mesaspis
E. coerulea
E. kingii
E. paucicarinata
E. multicarinata
E. panamintina
O. koellikeri

Anguis
O. apodus
O. harti
O. attenuatus
O. ventralis

2001-2101
Heloderma
Varanus
Shinisaurus
Xenosaurus
A. geronimensis
A. pulchra

Celestus
D. bilobatus
D. pleei

Ophiodes
Sauresia
Wetmorena
Barisia
Gerrhonotus
Abronia
Mesaspis
E. coerulea
E. kingii
E. paucicarinata
E. multicarinata
E. panamintina
O. koellikeri

Anguis
O. apodus
O. harti
O. attenuatus
O. ventralis

OLCYS
CYS
TYR
*<< GCCTCTTA-.-AAACGGGAGAAGTTCCGGGGATCTMA--ACTCCATMCCAAGTTTGCAACTTGACGTAATM-................................... GCCTCTTA----AAACGGGAGAAGTTCCGGGGATCTTA---ACTCCATTMCCAAGTTTGCAACTTGACGTAATT---CTACTAC-AGAACTA-----TG
GTTTGGGAAA-AAACGGGAGAAGCCCAGGGGTAATCC---TACCCACTCTCAGATTIGCAATCTGAT----GACA-----CTC-TGAACTGCATC--TG GTCIAGAGGAG-AAACGGGAGAAGTCCGGGAGATCTTAG--ATCTCCTTTCCAAGTTTGCAACTTGGCGTGAA----ACACTYC-CGAACT-------G GTCGATAAA---AAACGGGAGAAGCCCGGGGGATCTTAAAAATCTCGGCTCCGAGTITGCAACTCGGCGTGCAGC--GCACTTC-AGGACT-.............. TG GTTCGAAAAA--AAACGGGAGAAGCCCGGGAAATCTTIG--ATTHCGACTCCAAGTITGCAACTTGGCGIGTTTA--ACACCAC-CAGACCC------TG GITAGTAGAAAAAAACGGGAGAAGCCCAGGAAATCTTCG--ATTTCGACTCCAAGTTTGCAACTTGGCGTGTTAA--ACACCAC-CAGACTT-----TG GICTAAAA---AAACGGGAGAAGCCCCGGAAATCT-TTCGATTTCTTCTCAGGGTTTTGCAACCCTGTGTGATA---ACACCCC-GAGGCT---------G GTCTAGAGAAA-AAACGGGAGAAGCCCCGGAGATCTCAA--ATCTCTTTTTCAAGTTTGCAACTTGACGTGATA---ACACCTC-GGGGCT----------GTCTAAAA--- AAACGGGAGAAGTCCGGGAGATACTTAA-ATCTCTGCTCCAAGTTTGCAACTIGGCGTAT-----ATACCTC-AAGACT--------GCTTCAA-----AAACGGGAGAAGCCCAGGAGATCTCCG--ATCTCTTCTCCAAGTITGCAACTTGGCGTGAT----ACACCCC-AGGACT--------G GTCTAAAA----AAACGGGAGAAGCCCAGGAAACTTTC---ATTTCTATTTTAAGTTTGCAACTTPAACGTGTTA---ACACCTCPAAGGCT--------GTCTGAAA----AAACGGGAGAAGCCCAGGAAAACTIAG--TITTCTATTHTAAGTTTGCAACTTAACGTGTCA---ACACCTC-AAGGCT-------G GTMAGAGAAA--AAACGGGAGAAGTCCCGGAGAACTITAA-ATCTCTACTCCAGGTMTGCAACCTGGTGTGTPA---ACACCTC-GGAACCT------TG GTTAGAAGAA--AAACGGGAGAAGTCCCGGAGATCTTTTAGATMTCAATTCCAAGTTTGCAACTTGGTGTGTTA---ACACCTC-GGAACCC-----TG GTTAGAGAAA--AAACGGGAGAAGCCCCGGAGATCTCGG--ATCTCAACTCCAAGTMTGCAACTTGGTGTGTTA---ACACCTC-GGAACC-----TG GTTAGAGAA---AAACGGGAGAAGTCCCGGAGATCTTTTAGATCTCGATTCCAAGTTTGCAACTTGGTGTGTAA---ACACCCC-GGAACCG------TG GTTAGAGAA---AAACGGGAGAAGCCCCGGAGATCTITAG-GTCTCAATTCCAGGTTTGCAGCCTGGTGTATT----TTACCTC-GGGACC-------TG GTTAGAGAA---AAACGGGAGAAGCCCCGGAGATCTMAAC-GICTCTTTTCCAGGTITGCAGCCIGGTG-ATT---TTACCTC-GGGACC------TG
 GTTAGAGGAA--AAACGGGAGAAGTCCCGGAGATCTTAAC-GTCTCTTTTCCAGGTTTGCAGCCTGGTGTATT----TTACCNC-GGGACC------TG GTPAGAGAAA--AAACGGGAGAAGTCCCGGAGATCTTAAC-GTCTCTMTPCCAGGTTTGCAGCCTGATGTAT-----TPACCTC-GGGACC-----TG GTTGGTAA---AAACGGGAGAAGCCCCGGGGAATCICAT-ATCTCTACTCCAAATTTGCAACTTGGCGTGTTGGCAACACCTC-AGGGCTG-----TG GTTAGTAAA---AAACGGGAGAAGCCCCGGAGATCCIAA--ATCTCAATTCCAAGTITGCAACTTGGCGTGTAAATAACACCTC-GAGGCTT------TG GTCGGCAA --.-- AAACGGGAGAAGCCCCGGAGATCCTAA --ATCTCGACTCCAAGTTTGCAACTMGGCGTGTAGGCAACACCTC-AGGACTT-----TG GTCATTTA---AAACGGGAGAAGCCCCGGAGATCTCTAC-GTCTCAATTCCAGGTTTGCAACCTGGCGTGTGA---ACACCAC-AGGACTCCGCCCCTG GICTGTATA---AAACGGGAGAAGCCCCGGAGATCCTAA--ATCTCAATTCCAAGTTTGCAACTTGGCGTGTGA---ACACCTC-AGAGCCA------TG GICIGTAAA---AAACGGGAGAAGCCCCGGAGATCCTTAA-ATCTCAATTCCAAGTTTGCAACTTIGGCGTGTTA-.-ACACCAC-AGGGCTG--.-.-.-TG
 ATAAGAGAGGAATITA--ACCTCGTTAGCAAATTTACAATCTGCCGCCTA--ACTCTCGGCCATCTTACCTGTGACCATTACTCGCTGACTCTTTTCAACT ATAAGGAAGAT-CTTAC-CTCTTGTGAGTAAATTPACAATTIACCGCCT-----ACTCAGCCACCTTACCCATGACCATCACCCGCTGACTATTCTCCACC GAAAGAAGAGGAATTAAACCCCTGTTAATAGGTCTACAGCCTACCGCTAAG--CACTCAGCCACCTTACCTTTGACCATCACTCGCTGATTCTTCTCGACC ATAAGAAAAGGAGTTAAACCTCTCTTCATAGGACTACAGCCTACCGCTATGGACGCTCAGCCATCTPACCTGTGACCCTAACTCGATGGTTCTTTTCAACC GCAAGGAAAGGAATTAAACCCCTCTAAGCAGGACTACAGCCTGCCGCCTAAAACACTCGGCCACCCTACCTGTGACTGTCACCCGCTGATTATTCTCAACC ATAAGAAAAGGAATTTAACCICTCTAAATAGGACTACAGCCTACTGCCTAA-ACACTCGACCATCTPACCIGTGACCATCACCCGCTGATTATTCTCAACC ATAAGAAGAGGAATTAAACCCCTATTAATAGGACTACAGCCTACCGCCTAA-ACGCTCGGCCATCTMACCTGTGACCATAACACGATGACTATTCTCTACA ATAAGAAAAGGAATTAAACCTCTITTAATGGGACTACAGCCCACCACCTAA-ACATTCGGCCATCTTACCTGTGACCCTCACACGTTGACICITCICAACT ATAAGAAAAGGAATTGAACCTCTATTAATAGGACTACAGCCTACCACCTTA-ACACTCGGCCATCTTACCTGTGACCATCACACGCTGACTATTCTCAACC ATAAGAAAGGGAATCAAACCCCTATTAATAGGACTACAGCCTACCACCTAA-ACACTCGGCCATCTTACCTGTGACCACCACACGCTGACTATTTTCCACC ATAAGAAAAGGAATTAAACCTTTGTGGGTAGGACTACAGCCTACTACCTATTACACTCGGCCATCTTACCFGTGACCATCACACGATGACTCTTTTCCACT ATAAGAAAAGGAATTAAACCTTTGTAGATAGGACTACAGCCTACTACCT-T-ACACTCGGCCATCTTACCTGTGACCATCACACGATGACIATTCTCCACT ATAAGAAAAGGAATTTAACCTCTATTAATAGGACTACAGCCTACCGCCTAA-ACATTCGACCACCTTIACCTGTGACCATAACPCGATGACTTTTCTCAACC ATAAGGAAAGGAATTTAACCTCTACTAATAGGACTACAGCCTACCGCCTAA-ACATTCGACCACCTTACCTGTGACCACAGCCCGCTGACTATTTTCAACC ATAAGAAAAGGAATTAAACCTCTGTTAATAGGACTACAGCCTACCGCCTAA-ACATTCGACCATCTPACCTGTGACCACAACTCGCTGACTATTTTCAACC ATAAGAAGAGGAATTTAACCTCCATAAATAGGACTACAGCCTACCGCCTAA-ACATTCGACCATCTTACCIGIGACCACAACTCGCIGATTAITCICAACC ATAAGAAAAGGAGTCTAACCTCTGTTAATAGGACTACAGCCTACCACCTAA-ACATTCGGCCATCTTACCTGTGACCACAACTCGCTGACTATTTTCAACT ATAAGAAAAGGAATTMAACCICTATTHCTAGGACTACAGCCTACCACCTAA-ACATTCGGCCATCTTACCTGTGACCACAACTCGCIGATTATICTCAACT ATAAGAAAAGGAATTPAACCICTATTATTAGGACTACAGCCTACCGCCTAA-ACATTCGGCCATCTTACCTGTGACCACAACTCGCTGATTATTCTCAACC ATAAGAAAAGGAATTTAACCTCTATTATTAGGACTACAGCCTACCACCTAA-ACATTCGGCCATCTPACCTGTGACCACAACГCGCTGATTATTCTRCAACT ATAAGAAAAGGAATTTAACCTCTATTATTAGGACTACAGCCTACCACCTGA-ACATTCGGCCATCTTACCTGTGACCACAACTCGCTGATTATTCTCAACC ATAAGAAAGGGAGIGAAACCCATGTAAATAGGACTACAGCCTACCGCCTAG-GCGCTCGGCCATCTTACCTGTGACCCTCGCTCGCTGACTGTTTTCAACC ATAAGAAAGGGAATAAAACCCCTGTAAATAGGACTACAACCTACCACCTGG-ACACTCGGCCATCTIACCTGTGACTATCACTCGCTGACTATTTTCAACT ATAAGAAAGGGAATAAAACCCCTGTAAATAGGACTACAGCCTACCGCCTGG-CCACICGGCCATCTTACCTGTGTCCATCGTTCGCTGATTATTCTCAACT ATAAGAAAGGGAGTGGAACCCCTGTTAATAGGACTACAGCCTACCGCCTGG-TCGCTCGGCCATCITACCIGTGACCCTCACTCGCTGATTAITITTCAACT ATAAGAAAGGGAGTCAAACCCCTGTTAGTAGAACTACAGCCTACCGCCTAG-GCGCTCGGCCATCTTACCIGFGACACTAACTCGCTGACTATTTTCTACT ATAAGGAAGGGACDCAAACCCCTGTTGGTAGGGCTACAGCCTACCGCCTAA-ACACTCGGCCATCTTACCTGTGACCCTCGCCCGATGGCTATTVTCAACC

FIG. 1—Continued
ing MacClade (Maddison and Maddison, 1992) and analyzed as constraints using PAUP* beta version 4.0b1 (Swofford, 1998) with 100 heuristic searches with random addition of sequences.

Cladistic Anal yses of Allozymic Data

Previously reported allozymic data of Good (1987, 1988) were coded in two ways for cladistic analysis. Although presence-absence coding of alleles has received considerable criticism for a lack of independence of alleles and the possibility of no allele being reconstructed for an ancestral node, it remains the method that provides the greatest amount of resolution. Alternatively, combinations of alleles for a particular locus may be coded as discrete character states (Buth, 1984). If step matrices are used to connect character states, a greater amount of information can be retained (Mabee and Humphries, 1993). In our analysis, step matrices
were constructed on the basis of gains and losses of alleles. For example, a fixed difference between two alleles was counted as two steps, one allele lost and another gained. If a two-allele polymorphism in one population shares one allele with another monomorphic population, a single gain or loss was counted as one step. Additional polymorphisms were counted in the same manner.

In the allozymic data for the Gerrhonotinae (Good, 1987), no outgroup was completely scored. Instead, alleles found in Abronia, Barisia, and Mesaspis that were present in Elgaria were recorded. When no allele was reported for a particular locus in the outgroup, we inferred that at least one unique allel e was present.

Phylogenetic analysis of tRNA stem regions used MacClade (Maddison and Maddison, 1992). The number of stem pairings was ordered in these analyses.

RESULTS

Sequences ranging in size from 2034 to 2061 bases of mitochondrial DNA for 27 taxa of anguimorph lizards are presented as 2101 aligned positions in Fig. 1.

Authentic Mitochondrial DNA
Several observations suggest that the DNA sequences analyzed here are from the mitochondrial genome and are not nuclear-integrated copies of mitochondrial genes (see Zhang and Hewitt, 1996). Proteincoding genes do not have premature stop codons, suggesting that these sequences represent functional copies that encode a protein. Transfer-RNA genes appear to code for tRNAs with stable secondary structures, indicating functional genes. The presence of strand bias further supports our conclusion that the 27 DNA sequences reported here are from the mitochondrial genome. The sequences reported here show strong strand bias against guanine on thelight strand ($\mathrm{G}=11$ $14 \%, \mathrm{~A}=30-36 \%, \mathrm{~T}=22-29 \%$, and $\mathrm{C}=25-35 \%$), which is characteristic of the mitochondrial genome but not the nuclear genome. See Macey et al. (1997a,c, 1998a) for similar strand bias across most squamatereptile families for the same region of the mitochondrial genome.

Assessment of Homology and Sequence Alignment

Sequences reported correspond to positions 3874 to 5936 on the human mitochondrial genome (Anderson et al., 1981). This sequence contains the genes encoding ND1 (subunit one of NADH dehydrogenase), tRNA ${ }^{1 l}$,
 tRNA ${ }^{\text {Cys }}$, tRNA ${ }^{\text {Tyr }}$, and COI (subunit I of cytochrome c oxidase), plus the O_{L} between thetRNAAsn and tRNACys genes (Fig. 1). Except for the last couple of codon positions in the ND1 and ND2 genes and a single deletion of a codon position in the ND1 gene of Heloderma, no length variation is found in protein-coding genes, making alignment straightforward. Among pro-tein-coding sequences, only the last few amino acid positions encoding ND1, the stop codon, and noncoding sequences between the ND1 and tRNAlle genes are excluded from phylogenetic analyses (positions 382407) because of considerable length variation. Gaps are placed in the He oderma sequence in positions 211-213 corresponding to codon position 71 of the ND1 gene fragment included in this study.

Among tRNA genes, a few loop regions are unalignable as are some noncoding sequences between genes. Phylogenetic analyses do not include regions encoding the dihydrouridine (D) and T $\psi C(T)$ loops of thetRNAlle (positions 421-427, 460-471), tRNA ${ }^{\text {Trp (positions 1680- }}$ 1689, 1721-1730), and tRNA ${ }^{\text {Cys }}$ (positions 1973-1977, 1935-1941) genes. Part of the region encoding the D-loop of thetRNA ${ }^{\text {Tyr }}$ gene (positions 2050-2052) al so is excluded.

The tRNA ${ }^{\text {Cys }}$ gene can be particularly problematic to align for phylogenetic analyses because gene sequences that do not encode a D-stem can have stem realignment in the AA- and T-stems (Macey et al., 1997b). The previously published sequence for Varanus griseus (Macey et al., 1997a,b) appears to be homologous to other sequences analyzed. Most of the bases from the D-arm replacement loop are placed in the excluded D-loop region in the alignment. In addition, the tRNACys gene sequences from Elgaria kingii and E. pauci carinata appear to have a T base deleted from the region encoding the D-stem and a gap is placed at position 1970. In thetRNA ${ }^{\text {Cys }}$ gene, the T -stem in sometaxa may be extended beyond the normal five pairs. The phylogenetic analysis includes only the five paired positions normally observed. Sauresia has an unusual tRNACys in which a T has been inserted in the region encoding the AA-stem, forcing three bases between the AA- and D-stems in the encoded tRNA. A gap is placed in all other taxa at position 1985.

In the tRNA ${ }^{\text {GIn }}$ gene a deletion of an A from the AA-stem at position 486 appears to have occurred in Varanus. This deletion has resulted in a realigned T-stem. In the phylogenetic analysis a gap is placed in the Varanus sequence at position 492, and the Varanus sequence is aligned to the secondary structure observed in the other taxa.

Sequences between the tRNA ${ }^{\text {Trp }}$ and the tRNAAla genes and between the tRNACys and the tRNA ${ }^{\text {Tyr }}$ genes (positions 1744-1745 and 1992-1998, respectively) are not used in the phylogenetic analyses. The loop region of the replication origin for the light strand is mostly unalignable and therefore not used (positions 19021912).

Among the 2101 aligned positions only 100 sites, constituting less than 5% of the aligned sequences, are excluded from the phylogenetic analyses.

Variation of Stems in tRNACys

Tremendous variation in stem lengths occurs among the 27 tRNA ${ }^{\text {Cys }}$ gene sequences reported here (Fig. 2) and in Macey et al. (1997b). Both the D- and T-stems show variation for the number of base pairings in stem regions that deviate from the typical four pairs in D-stems and five pairs in T-stems.

In Varanus, tRNA ${ }^{\text {Cys }}$ is known to lack a D-stem and instead contains a D-arm replacement loop (Macey et al., 1997b). This structure has been postulated to result from slipped-strand mispairing of noncontiguous repeats during replication (Fig. 2; Macey et al., 1997b). The number of pairings in the D-stem varies among other taxa between one and six. Ophisaurus koellikeri has an unusually large six-base D-stem that contains two extra pairs. Three other taxa, Xenosaurus and the two Anniella species, have five-base D-stems, hence containing one extra pair. M ost taxa (Heloderma, Sau-

FIG. 2. Potential secondary structures derived from 27 tRNACys gene sequences presented in Fig. 1. A standard tRNA with a four-base D-stem and a five-base T-stem is depicted first, where $R=G$ or $A, Y=C$ or T, and $V=G, C$, or A (after Kumazawa and Nishida, 1993). L indicates the three loop regions where length variation is standardly observed. Varanus lacks a D-stem and instead contains a D-arm replacement loop. Bases boxed represent three potential noncontiguous repeats postulated to have resulted from slipped-strand mispairing during replication (Macey et al., 1997b). Sauresia has an unusual tRNACys in which an A has been inserted in theAA-stem, forcing three bases between theAA- and D-stems instead of the two bases normally observed. Note the tremendous variation in sizes of both D-and T-stems. The position where an A was deleted destroying the D-stems in Elgaria kingii and E. paucicarinata is indicated.

Mesaspis
moreleti

Elgaria
coerulea

Elgaria
kingii

Elgaria paucicarinata

Anguis
fragilis

Ophisaurus ventralis

FIG.2-Continued
resia, Wetmorena, Barisia, Gerrhonotus, Abronia, Me saspis, Anguis, and all Ophisaurus species except O. kodlikeri) have the normal four base pairings in the D-stem. Eight taxa (Shinisaurus, Celestus, Diploglossus bilobatus, D. pleei, Ophiodes, Elgaria coerulea, E. multi carinata, and E. panamintina) have reduction of one pair to produce D-stems composed of three base pairings. Interestingly, D. pleei and E. panamintina have only two bases in the D-loop, which is less than the minimal three bases required to restore through base substitutions a fourth D-stem base pairing while retaining at least one D-Ioop base.

Only Elgaria kingii and E. paucicarinata are observed to have a single base pairing in the D-stem. These taxa have only six bases in the D-loop, which is
less than the minimum of seven bases required to restore through base substitutions three additional base pairings in theD-stem while retaining at least one D-loop base. From comparison with the other tRNACys gene sequences, it appears that a T encoding an A in the tRNA is deleted, destroying the D-stem. In addition, no direct repeats or noncontiguous repeats are observed; such repeats are implicated, however, in the formation of D-arm replacement loops among eight other lepidosaurian taxa (Macey et al., 1997b).

Striking variation is observed also in the number of base pairings among T -stems in tRNACys gene sequences (Fig. 2). Only two taxa, Diploglossus pleei and Sauresia, have the typical five base pairings in the T-stem. Instead, a surprising situation occurs in which

T-stems are either reduced by one base pairing to produce four pairs, or lengthened to as many as eight pairs. The five Elgaria species, Ophisaurus koellikeri, and O . harti have T -stems that have lost a single pairing, producing a T -stem with four base pairings. Heloderma, Varanus, Anniella, Celestus, Ophiodes, and Abronia all show an additional pair, producing an increase in size of the T-stem to six base pairings. Shinisaurus, Diploglossus bilobatus, Wetmorena, Barisia, Gerrhonotus, Mesaspis, Anguis, Ophisaurus apodus, O . attenuatus, and O . ventralis all show two extra base pairings to produce T-stems seven pairs in length, and Xenosaurus has three extra pairs to produce eight base pairs in the T-stem. Note that with the exception of Heloderma, Varanus, and Sauresia, all taxa that contain less than seven base pairings in the T-stem contain T-loops large enough to produce additional pairs through base substitutions that would result in enlarged T-stems of seven base pairs.

Genic Variation

Different levels of DNA substitutional variation are observed among the 3 protein-coding genes, 8 tRNAcoding genes, and four noncoding regions (Table 2). All 11 genes contain phylogenetically informative characters. The 8 tRNA genes each have phylogenetically informative sites in stem and nonstem regions. Each of the 3 protein-coding genes contains phylogenetic information in first, second, and third codon positions. M ost of the variation and phylogenetically informative sites are from protein-coding regions. Only 23% of variable and 21% of phylogenetically informative sites are from tRNA genes and noncoding regions. Of the 802 phylogenetically informative characters from protein-coding regions, 448 are from third positions of codons. Thirdposition sites account for slightly less than half of the phylogenetically informative sites in the total data set. Only 150 phylogenetically informative sites occur in regions encoding stems of tRNAs, suggesting that compensatory substitutions do not compromise the phylogenetic analysis.

Phylogenetic Relationships

Two trees of equal length are produced from the parsimony analysis of the 2001 aligned DNA sequences containing 1013 phylogenetically informative base positions (Fig. 3, Table 2). Phylogenetic relationships are well resolved for most nodes of the tree. All ingroup taxa aregrouped to the exclusion of the Varanoidea (the New World Heloderma and the Old World Varanus) with good support (bootstrap 82\%, decay index 12). The Old World Shinisaurus and the New World Xenosaurus, often grouped as the Xenosauridae, appear not to form a monophyletic group. Instead, Shinisaurus is excluded from a monophyletic group containing Xenosaurus, the Anniellidae, and the Anguidae (bootstrap 91%, decay index 18). A monophyletic grouping of

Anniella and the Anguidae receives considerable support (bootstrap 98\%, decay index 29). A monophyletic Anniella (bootstrap 100\%, decay index 51) forms the sister taxon to the Anguidae, which appears monophyletic but with weak support (decay index 3).

Within the Anguidae, the Diploglossinae appears monophyletic with weak support (decay index 4) and forms the sister taxon to a clade composed of the Gerrhonotinae and Anguinae (bootstrap 80\%, decay index 6). Monophyly of both the Gerrhonotinae (bootstrap 100%, decay index 22) and Anguinae (bootstrap 100%, decay index 40) receives strong support.

In the Diploglossinae, Celestus and Diploglossus bilobatus from mainland Mexico and Central America form a monophyletic group with good support (bootstrap 93%, decay index 13). A second clade comprising West Indian and South American taxa, Diploglossus pleei, Ophiodes, Sauresia, and Wetmorena (bootstrap 82%, decay index 9) can be recognized in the Diploglossinae. Two well-supported groups are observed within this clade: (1) the Puerto Rican D. pleei and South American Ophiodes (bootstrap 100\%, decay index 47), and (2) the Hispaniolan Sauresia and Wetmorena (bootstrap 100\%, decay index 102).

Two clades are recognized in the Gerrhonotinae, one containing the Iargely Neotropical Barisia, Gerrhonotus, Abronia, and Mesaspis (bootstrap 69\%, decay index 4), and the other composed of the five species from the more temperate North American genus Elgaria (bootstrap 100\%, decay index 39). In the tropical group, only the sister-taxon relationship of Abronia and Mesaspis is recovered with strong support (bootstrap 99\%, decay index 17). Among the five species of Elgaria, all branches arewell supported. Elgaria coerulea, the most northern gerrhonotine, is the sister taxon to a group comprising the remaining species (bootstrap 100\%, decay index 29). The more eastern species, E. kingii, is the sister taxon to a monophyletic group of E. paucicarinata, E. multicarinata, and E. panamintina (bootstrap 94\%, decay index 9). Elgaria multicarinata and E. panamintina from California form a monophyletic group (bootstrap 98\%, decay index 8).

In the Anguinae, most relationships are not well supported. Ophisaurus kodlikeri from Morocco forms the sister taxon to the remaining species (decay index 1). A monophyletic grouping of the western Eurasian Ophisaurus apodus and Anguis fragilis is well supported (bootstrap 100\%, decay index 24) and forms the sister taxon to a weakly supported clade composed of the East Asian O. harti and the North American O. attenuatus and O. ventralis (decay index 1). North American Ophisaurus appear monophyletic with moderate support (bootstrap 77\%, decay index 7).

Phylogenetic relationships among the Anguidae, Anniellidae, and Xenosauridae resolved from reanalysis of allozymic data (Good, 1987, 1988) are largely the same whether analyzed with allelic combinations as charac-

TABLE 2
Distribution of Phylogenetically Informative and Variable Positions

a Not including D-and T-loops which were excluded from the analyses.
${ }^{\mathrm{b}}$ N oncoding region 1 includes the ND2 stop codon and sequences between the ND2 and the tRNA ${ }^{\text {Trp }}$ genes. Noncoding region 2 is between the tRNA Ala and the tRNA ${ }^{\text {Asn }}$ genes. Noncoding region 3 is between the tRNA ${ }^{\text {Asn }}$ gene and the O_{L}. Noncoding region 4 is between the tRNA $\mathrm{A}^{\text {Tyr }}$ and the CO genes.
${ }^{\text {c }}$ Not including part of the D-loop, which was excluded from the analyses.
ter states using step matrices or presence/absence coding of alleles (Fig. 4). In the survey of higher-level taxa (Good, 1987), a topology is acquired that is completely concordant with the DNA sequence data (Figs. 4 A and 4 B). When the data are coded using allelic combinations as character states and analyzed with step matrices, only two loci provide phylogenetic information. Monophyly of the Anguidae (Celestus, Elgaria, and Ophisaurus) is supported with a bootstrap value of 79% and a decay index of 2 , and monophyly of a group composed of the Gerrhonotinae (EIgaria) and Anguinae (Ophisaurus) is supported by a bootstrap value of 72% and a decay index of 1 . The same phylogenetic relationships result from presence/absence coding of individual alleles. The 20 informative alleles in the latter analysis provide considerably better support. Monophyly of the Anguidae is supported with a bootstrap value of 99% and a decay index of 9, and monophyly of a group containing the Gerrhonotinae and Anguinae is supported by a bootstrap value of 96% and a decay index of 3 .
The phylogenetic relationships between the five EIgaria species resol ved from reanalysis of allozymic data (Good, 1988) are in conflict with the result of the DNA
analysis (Figs. 4C and 4D). When the data are coded using allelic combinations as character states and analyzed with step matrices, five loci provide phylogenetic information. This analysis produces two equally most parsimonious trees in which the phylogenetic relationships of E. coerulea and E. multicarinata remain unresolved. Monophyly of a group containing E. pauci carinata, E. kingii, and E. panamintina is weakly supported (bootstrap 66\%, decay index 1). Monophyly of a group containing E. kingii and E. panamintina receives better support (bootstrap 80\%, decay index 2). A similar phylogenetic tree is resolved from presence/ absence coding of individual alleles. The 23 informative alleles in the latter analysis provide considerably better support. In this analysis, E. coerulea is excluded from a monophyletic group composed of E. multicarinata, E. paucicarinata, E. kingii, and E. panamintina (bootstrap 84\%, decay index 3). Monophyly of a group containing E. paucicarinata, E. kingii, and E. panamintina is not well supported (bootstrap 69\%, decay index 1) but the grouping of E. kingii and E. panamintina receives good support (bootstrap 98\%, decay index 6). Disagreement between analyses of the DNA sequence data and allozymic data for Elgaria species
occurs regarding the relative positions of E . kingii, E . multicarinata, E. panamintina, and E. paucicarinata.

The phylogenetic results provide an area cladogram for the H olarctic region. To confirm these results and to test support for the origins of clades found in separate historical regions, the Wilcoxon signed-ranks test (Felsenstein, 1985; Templeton, 1983) is applied (Table 3).
(1). Current taxonomy places Shinisaurus and Xenosaurus in a single family, the Xenosauridae. When the two shortest trees overall (A1-2 in Appendix 1) showing a nonmonophyletic Xenosauridae are compared to the shortest alternative trees (B1-4 in Appendix 1) showing a monophyletic Xenosauridae, this alternative is rejected in favor of the overall shortest trees by either the one-tailed or the two-tailed test (test 1 in Table 3). This result suggests that the Xenosauridae is not monophyletic.
(2). The two overall shortest trees from analysis of the DNA sequence data (Fig. 3) show that the Anniellidae, Anguidae, Diplogl ossinae, Gerrhonotinae, and Anguinae each form monophyletic groups. In addition, the overall shortest tree from analysis of allozymic data

FIG. 3. Phylogenetic relationships based on DNA sequences. Strict consensus of two equally most parsimonious trees produced from analysis of the 2001 aligned (1013 phylogenetically informative) positions. The tree has a length of 5452 steps and a consistency index of 0.394 . Bootstrap values are presented above branches and decay indices below branches.

FIG. 4. Phylogenetic trees from analyses of allozymic data from the literature (Good, 1987, 1988). Bootstrap values are presented above branches and decay indices below branches. (A) The most parsimonious tree from our analysis of Good's (1987) data using allelic combinations as character states and analyzed with step matrices. Two of the 22 loci are phylogenetically informative. Thetree has a length of 91 steps and a consistency index of 0.100 . (B) The most parsimonious tree from our analysis of Good's (1987) data coded by the presence or absence of the 72 (20 informative) individual alleles. The tree has a length of 76 steps and a consistency index of 0.921 . (C) Strict consensus tree of two equally most parsimonious trees from our analysis of Good's (1988) data using allelic combinations as character states and analyzed with step matrices. Five of the 18 loci are phylogenetically informative. The tree has a length of 88 steps and a consistency index of 0.955 . (D) The most parsimonious tree from our analysis of Good's (1988) data coded by the presence or absence of the 67 (23 informative) individual alleles. The tree has a length of 75 steps and a consistency index of 0.867 .
also shows monophyly of the Anguidae. When the two overall shortest trees (A1-2 in Appendix 1) from analysis of the DNA sequence data, which show a monophyletic Anniellidae, are compared to the shortest alternative trees (C1-2 in Appendix 1) having a nonmonophyleticAnniellidae, this alternative is rejected in favor of the overall shortest trees by the two-tailed test (test 2 in Table 3). Because the decay index on the branch leading to a monophyletic Anguidae is only 3 from analysis of the DNA sequence data, this branch cannot receive statistical support from the Wilcoxon signed-ranks test which requires at least 4 unopposed characters to be significant (F elsenstein, 1985).

When the overall shortest allozymic tree (Fig. 4B, allele presence/absence coded), which shows a monophy-

TABLE 3

Results of Wilcoxon Signed-Ranks Tests

Alternative hypotheses tested	Trees ${ }^{\text {a }}$	$\mathrm{N}^{\text {b }}$	Z ${ }^{\text {c }}$	$\mathrm{P}^{\text {d }}$
1. Monophyly of Xenosauridae	A1 vs B1	173	1.79	0.0370*
	A1 vs B2	149	1.97	0.0244**
	A1 vs B3	93	2.59	0.0048**
	A1 vs B4	119	2.14	0.0164**
	A2 vs B1	148	2.00	0.0230**
	A2 vs B2	173	1.84	0.0330*
	A2 vs B3	115	2.27	0.0115**
	A2 vs B4	93	2.59	0.0048**
2. Nonmonophyly of Anniellidae	Al vs C1	188	3.63	0.0002**
	A1 vs C2	207	3.49	0.0003**
	A2 vs $\mathrm{Cl}^{\text {a }}$	159	3.97	0.0001**
	A2 vs C2	180	3.71	0.0001**
3. Nonmonophyly of Anguidaee	Fig. 4B vs D1	13	2.50	0.0063**
4. Nonmonophyly of Diploglossinae	AlvsE1	125	0.35	0.3619
	A2 vs E1	93	0.41	0.3416
5. Nonmonophyly of Gerrhonotinae	Al vs F1	72	2.59	0.0067**
	A1 vs F2	68	2.67	0.0055**
	A2 vs F1	36	3.67	0.0001**
	A2 vs F2	36	3.67	0.0001**
6. Nonmonophyly of Anguinae	A1 vs G1	187	2.82	$0.0043^{* *}$
	A1 vs G2	188	2.83	0.0054**
	A1 vs G3	193	2.73	0.0031**
	A2 vs G1	156	3.09	0.0010**
	A2 vs G2	159	3.04	0.0012**
	A2 vs G3	169	3.00	$0.0014 * *$
7. Anniella as the sister taxon to the Anguinae	Al vs H1	119	1.38	0.0846
	A2 vs H1	89	1.59	0.0559
8. Anniella and Anguis form a monophyletic group	A1 vs I1	228	6.01	0.0001**
	A1 vs I2	204	6.29	0.0001**
	A2 vs I1	204	6.36	0.0001**
	A2 vs 12	235	5.90	0.0001**
9. Ophiodes and Ophisaurus koellikeri form a monophyletic group	A1 vsJ 1	289	8.79	0.0001**
	A2 vsJ 1	308	8.62	$0.0001^{* *}$
10. Diploglossus plei, Sauresia, and Wetmorena form a monophyletic group	Al vsK1 A1 vs K2	81 114	5.67 4.60	$0.0001 * *$ $0.0001 * *$
	A2 vs K1	111	4.84	$0.0001^{* *}$
	A2 vs K2	81	5.67	0.0001**
11. Ophisaurus koellikeri, Anguis fragilis and Ophisaurus apodus form a monophyletic group		86	0.74	0.2291
	A1 vs L2	62	0.87	0.1927
	A1 vs L3	31	1.26	0.1044
	A2 vs L1	57	0.93	0.1769
	A2 vs L2	31	1.26	0.1044
	A2 vs L3	61	0.90	0.1851
12. Anguis and Ophisaurus apodus are not sister taxa	A1 vs M1	80	2.68	0.0037**
	A 2 vs M1	112	2.21	0.0135**
13. Elgaria kingii and E. panamintina form a monophyletic sister group to E. paucicarinata	A1 vs N1	36	4.33	0.0001**
	A2 vs N1	68	3.15	0.0001**
14. Elgaria multicarinatae and E. panamintina form a monophyletic sister group to E. paucicarinata	Fig. 4D vs O1	11	2.71	0.0036**

[^2]Pairwise Comparisons of DNA Sequences among the Anguidae and Related Taxa ${ }^{\text {a }}$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
1. Heloderma	-	30.3\%	29.5\%	28.8\%	29.3\%	29.6\%	30.3\%	30.9\%	29.5\%	28.9\%	29.5\%	30.1\%	28.0\%	27.4\%	27.2\%	27.8\%	28.0\%	27.7\%	28.1\%	27.8\%	27.4\%	28.2\%	28.8\%	29.5\%	28.2\%	29.3\%	28.6\%
2. Varanus	597	-	31.3\%	31.0\%	31.8\%	30.8\%	32.4\%	32.8\%	31.1\%	31.9\%	31.7\%	31.0\%	31.3\%	31.9\%	30.6\%	31.5\%	30.8\%	30.6\%	30.7\%	30.7\%	30.5\%	31.4\%	31.4\%	30.5\%	30.7\%	30.6\%	30.2\%
3. Shinisaurus	584	618	-	29.6\%	27.0\%	27.9\%	27.1\%	28.4\%	27.7\%	28.1\%	28.2\%	28.2\%	27.1\%	27.8\%	27.3\%	27.4\%	27.3\%	27.5\%	27.4\%	27.2\%	27.1\%	27.8\%	28.0\%	28.9\%	28.5\%	29.2\%	27.8\%
4. Xenosaurus	571	611	586	-	27.1\%	25.2\%	26.6\%	27.4\%	26.0\%	25.5\%	27.4\%	26.9\%	25.8\%	25.4\%	24.9\%	25.7\%	25.3\%	25.5\%	25.7\%	25.9\%	25.6\%	26.1\%	26.4\%	26.6\%	26.1\%	26.2\%	25.5\%
5. A. geronimensis	580	627	536	537	-	12.2\%	21.3\%	24.4\%	23.0\%	22.7\%	23.3\%	22.7\%	20.4\%	20.5\%	20.5\%	20.8\%	20.0\%	20.8\%	20.5\%	20.5\%	20.1\%	21.3\%	20.9\%	22.1\%	21.1\%	21.7\%	20.2\%
6. A. pulchra	588	608	553	500	243	-	21.4\%	23.4\%	23.1\%	22.8\%	23.7\%	22.7\%	21.3\%	20.4\%	20.2\%	20.5\%	20.4\%	21.3\%	21.1\%	21.1\%	21.2\%	21.4\%	20.7\%	21.9\%	21.0\%	21.2\%	20.4\%
7. Celestus	600	639	537	527	422	425	-	21.7\%	21.5\%	21.9\%	22.8\%	22.7\%	22.0\%	21.8\%	22.0\%	22.8\%	21.6\%	21.6\%	21.6\%	21.0\%	21.1\%	22.8\%	22.4\%	23.8\%	23.6\%	23.4\%	22.1\%
8. D. bilobatus	613	647	564	543	483	464	431	-	23.1\%	23.5\%	25.3\%	24.3\%	23.8\%	22.3\%	22.5\%	23.1\%	23.2\%	23.5\%	23.8\%	23.5\%	23.3\%	23.2\%	23.3\%	24.4\%	24.2\%	22.8\%	23.5\%
9. D. plei	584	613	548	514	455	458	427	457	-	14.4\%	22.3\%	20.9\%	22.7\%	22.5\%	21.8\%	23.3\%	22.4\%	22.5\%	22.7\%	22.5\%	22.3\%	22.8\%	22.5\%	22.9\%	23.0\%	23.2\%	22.3\%
10. Ophiodes	571	628	557	506	451	452	434	466	286	-	22.3\%	21.7\%	22.8\%	22.4\%	22.2\%	23.6\%	21.9\%	22.1\%	22.4\%	22.2\%	22.0\%	23.4\%	22.5\%	22.7\%	22.1\%	23.2\%	20.9\%
11. Sauresia	585	625	560	543	463	471	453	502	443	442	-	9.1\%	23.6\%	24.2\%	24.0\%	24.3\%	23.6\%	24.0\%	24.7\%	24.1\%	24.2\%	24.4\%	24.4\%	24.0\%	24.2\%	23.9\%	22.5\%
12. Wetmorena	597	611	559	533	450	451	452	483	414	430	181	-	22.3\%	23.2\%	22.3\%	22.7\%	22.9\%	23.1\%	23.3\%	23.5\%	23.3\%	23.9\%	23.1\%	23.5\%	23.5\%	23.5\%	21.7\%
13. Barisia	556	617	537	513	405	423	437	472	449	451	468	442	-	13.6\%	13.7\%	15.6\%	14.0\%	14.4\%	14.4\%	14.3\%	13.8\%	18.6\%	18.6\%	20.0\%	20.0\%	18.3\%	17.9\%
14. Gerrhonotus	544	630	551	505	407	405	432	442	445	443	481	460	271	-	13.0\%	14.3\%	14.2\%	14.6\%	15.1\%	15.3\%	14.8\%	19.4\%	19.4\%	20.7\%	19.9\%	18.6\%	18.6\%
15. Abronia	540	604	542	495	407	402	437	446	433	441	476	442	273	258	-	11.8\%	13.8\%	15.5\%	15.1\%	14.7\%	14.7\%	18.0\%	17.8\%	19.7\%	19.6\%	17.6\%	17.7\%
16. Mesaspis	552	622	544	511	412	407	453	459	462	467	482	450	310	285	234	-	15.3\%	15.7\%	15.4\%	15.5\%	15.1\%	20.0\%	19.6\%	21.3\%	20.7\%	19.4\%	19.1\%
17. E. coerulea	556	609	541	503	398	405	430	461	444	435	469	455	279	283	275	304	-	8.6\%	8.8\%	8.4\%	8.5\%	18.3\%	17.2\%	19.1\%	18.7\%	18.0\%	17.3\%
18. E. kingii	549	605	546	507	412	424	429	467	446	439	477	459	286	290	308	312	171	-	5.9\%	4.8\%	4.8\%	19.1\%	18.4\%	19.8\%	18.9\%	19.2\%	17.8\%
19. E. paucicarinata	557	607	543	510	407	419	430	473	450	444	491	462	287	299	300	307	175	117	-	4.4\%	4.5\%	18.9\%	18.9\%	20.3\%	19.0\%	19.3\%	18.0\%
20. E. multicarinata	551	606	540	515	407	420	418	466	446	441	479	467	285	304	293	309	167	95	87	-	2.0\%	18.3\%	18.0\%	19.8\%	18.8\%	18.6\%	17.9\%
21. E. panamintina	544	603	538	509	400	421	420	462	442	436	481	463	274	295	292	300	170	96	90	39	-	18.3\%	18.5\%	19.8\%	19.1\%	18.6\%	18.1\%
22. O. kodlikeri	559	620	552	518	423	426	454	461	453	464	484	475	370	386	357	397	364	379	376	364	365	-	13.5\%	15.8\%	14.7\%	14.4\%	13.6\%
23. Anguis	572	620	556	524	415	412	446	462	447	447	485	459	369	385	354	390	342	365	375	358	369	269	-	11.7\%	14.8\%	14.7\%	12.8\%
24. O. apodus	585	603	573	528	439	436	473	485	455	451	477	467	398	411	392	424	380	393	404	393	393	315	233	-	15.6\%	16.1\%	14.1\%
25. O. harti	560	606	566	519	420	418	469	480	457	439	481	468	397	395	389	411	372	376	377	375	379	292	295	311	-	14.0\%	13.3\%
26. O. attenuatus	582	605	579	521	431	421	466	453	460	461	476	467	363	370	350	385	359	382	384	370	370	286	293	320	278	-	11.6\%
27. O. ventralis	567	597	552	506	401	406	439	466	442	415	447	432	355	370	351	380	345	354	357	356	360	271	255	281	265	231	-

letic Anguidae, is compared to the shortest alternative tree (D1 in Appendix 1) having a nonmonophyletic Anguidae, this alternative is rejected using the allele presence/absence coded data (Good, 1987) in favor of the overall shortest tree by the two-tailed test (test 2 in Table3).
When the two overall shortest trees (A1-2 in Appendix 1) from analysis of the DNA sequence data, which show a monophyletic Diploglossinae, are compared to the shortest alternative tree (E1 in Appendix 1) showing a nonmonophyletic Diploglossinae, this alternative cannot be rejected in favor of the overall shortest trees (test 4 in Table 3). When the two overall shortest trees (A1-2 in Appendix 1) from analysis of the DNA sequence data, which show a monophyletic Gerrhonotinae, are compared to the shortest alternative trees (F 1-2 in Appendix 1) showing a nonmonophyletic Gerrhonotinae, this alternative is rejected in favor of the overall shortest trees by the two-tailed test (test 5 in Table 3). When the two overall shortest trees (A1-2 in Appendix 1) from analysis of the DNA sequence data, which show a monophyletic Anguinae, are compared to the shortest alternative trees (G1-3 in Appendix 1) showing a nonmonophyletic Anguinae, this alternative is rejected in favor of the overall shortest trees by the two-tailed test (test 6 in Table 3). Hence, the Anniellidae, Anguidae, Gerrhonotinae, and Anguinaeeach form monophyletic groups with statistical support, but statistical support is lacking for monophyly of the Diploglossinae.
(3). The phylogenetic position of Anniella is a point of disagreement. When the two overall shortest trees (A1-2 in Appendix 1), which show Anniella as thesister taxon to the Anguidae, are compared to the shortest alternative tree (H1 in Appendix 1) showing Anniella as the sister taxon to the Anguinae, this alternative cannot be rejected in favor of the over all shortest trees, but it is close to significance using the one-tailed test (test 7 in Table 3). When the two overall shortest trees (A1-2 in Appendix 1), which show Anniella as thesister taxon to the Anguidae, are compared to the shortest alternative trees (11-2 in Appendix 1) showing the hypothesis of Keqin and Norell (1998) that Anniella is the sister taxon to Anguis, this alternative is rejected in favor of the overall shortest trees using the two-tailed test (test 8 in Table 3). Anniella is unlikely to represent the sister taxon to either Anguinae or Anguis.
(4). Only Ophisaurus koellikeri from Morocco and Ophiodes from South America are endemic to Gondwanan continents. When the two overall shortest trees (A1-2 in Appendix 1), in which O. koellikeri and Ophiodes do not form a monophyletic group, are compared to the shortest alternative tree (J 1 in Appendix 1) showing them as sister taxa, this alternative is rejected in favor of the overall shortest trees using the twotailed test (test 9 in Table 3). Taxa inhabiting Gond-
wanan plates therefore do not share a common Gondwanan origin.
(5). West I ndian taxa appear not to form a monophyletic group. When the two overall shortest trees (A1-2 in Appendix 1), in which West Indian taxa (Diploglossus plei, Sauresia, and Wetmorena) do not form a monophyletic group, are compared to the shortest alternative trees (K1-2 in Appendix 1) showing a monophyletic grouping of these taxa, this alternative is rejected in favor of the overall shortest trees using the two-tailed test (test 10 in Table 3). These results indicate that the South American genus Ophiodes is derived from the West I ndies.
(6). The three Old World taxa that occur between the Atlantic Ocean and the Tibetan Plateau, Ophisaurus koellikeri, Anguis fragilis, and O. apodus, are found not to form a monophyletic group. When the overall shortest trees (A1-2 in Appendix 1), in which Ophisaurus koellikeri, Anguis fragilis, and O. apodus do not form a monophyletic group, are compared to the shortest alternative trees (L1-3 in Appendix 1) showing these species as a monophyletic group, this alternative costs seven steps but cannot berejected in favor of the overall shortest trees (test 11 in Table 3). The most parsimonious trees suggest that the history of anguine lizards in western Eurasia and Morocco is older than anguine history in North America, contrary to the alternative hypothesis grouping taxa from western Eurasia and Morocco as closest relatives. Anguis fragilis and O . apodus form a monophyletic group. When the two overall shortest trees (A1-2 in Appendix 1), which group A. fragilis and O. apodus as sister taxa, are compared to the shortest alternativetree (M1 in Appendix 1) in which these species are not sister taxa, this alternative is rejected in favor of the overall shortest trees using the two-tailed test (test 12 in Table 3). As currently recognized, Ophisaurus is not monophyletic.
(7). The only point of disagreement between the analyses of the DNA sequence data and allozymic data is therelative placement of EIgaria kingii, E. multicarinata, E. panamintina, and E. paucicarinata. When the overall shortest DNA trees (A1-2 in Appendix 1), which show E. multicarinata and E. panamintina as a monophyletic sister group to E. paucicarinata, are compared to the shortest alternative tree (N1 in Appendix 1) showing E. kingii and E. panamintina as a monophyletic sister group toE. paucicarinata, this alternative is rejected by the DNA sequence data in favor of the overall shortest trees using the two-tailed test (test 13 in Table 3). When the shortest allozymic tree (Fig. 4D, allele presence/absence coded) showing E. kingii and E. panamintina as a monophyletic sister group to E. paucicarinata is compared to the shortest alternative tree (O1 in Appendix 1) showing E. multicarinata and E. panamintina as a monophyletic sister group to E. pauci carinata, this alternative is rejected by the allele presence/absence coded data (Good, 1988) in favor of
the overall shortest tree using the two-tailed test (test 14 in Table 3). The DNA sequence and allozymic data are in conflict with regard to the relative grouping of the species Elgaria kingii, E. multicarinata, E. panamintina, and E. paucicarinata. Two explanations for this discordance can be given. First, it is possible that the mitochondrial genome has undergone lineage sorting (Pamilo and Nei, 1988) and is misleading phylogenetically. Alternatively, the allozymic data of Good (1988) may be misleading because of small samplesize; the sample size for E. paucicarinata is four individuals, E. kingii is two individuals, and for E. panamintina is only one individual. These sample sizes are not adequate for evaluating occurrence of alleles in a population or a species. Further work is needed to confirm our results inferred from mitochondrial DNA sequences, but we suggest that this hypothesis of phylogeny is the more reliable estimate.

DISCUSSION

Phylogeny and Biogeography of Extant F orms and the Fossil Record
Anguid lizards are inferred to have originated in the northern hemisphere. Our data considered in light of biogeographic and paleontological evidence clearly reject a Gondwanan origin for the Anguidae. No anguid fossils are known from tectonic regions of Gondwanan origin. Only two taxa occur exclusively on separate Gondwanan continents, Ophiodes in South America and Ophisaurus koellikeri in Morocco (Fig. 5). A sister group relationship between these taxa is statistically rejected, indicating that they do not share a common Gondwanan origin. The molecular phylogenetic analysis places these taxa in different clades of Laurasian origin in the northern hemisphere. Ophiodes is nested within West Indian diploglossines and monophyly of West Indian diploglossines is statistically rejected, indicating that Ophiodes descends from a lineage that originated in the West Indies and subsequently moved to South America. Ophisaurus koellikeri appears to be the sister taxon to the remaining members of the Anguinae. All other anguines occur in Europe, West Asia, East Asia, or NorthAmerica, which consist primarily of Laurasian plates. Because other anguids, anniellids, and Xenosaurus occur in North America, the Anguinae is nested within a clade of northern forms of Laurasian origin (Fig. 5).

The opening of the Atlantic Ocean in the late E ocene [50 million years before present (MYBP)] may have produced the divergence between theAnguinae and the Gerrhonotinae, which are sister taxa. The location of the most basal anguine lineages in Morocco and western Eurasia supports this explanation. Miocene climatic changes and montane uplifting in North America may have separated the two major clades of gerrhono-

FIG. 5. Area cladogram for anguid lizards and related taxa. Taxonomy is shown to the right. Note deep divergences in North America with a dispersal event from the West Indies to South America and a nested position for Old World anguines. The shortest estimate of phylogeny suggests that the formation of the Atlantic Ocean separated the Gerrhonotinae and Anguinae. Following the Oligocene drying of the Turgai Sea, dispersal of anguine lizards from Europe to East Asia and across the Bering Iand bridge to North America was possible, but would have been interrupted rapidly by the uplift of the Tibetan Plateau. It costs seven steps on our phylogenetic estimate to construct a topology compatible with anguinetaxa originating in North America and crossing the Bering land bridge to East Asia, with continued dispersal to Europe following the Oligocene drying of theTurgai Sea.
tines, one primarily tropical and the other primarily temperate.

Phylogenetic relationships (Fig. 3) are surprisingly well resolved for branches ranging from the late Cretaceous (95-75 MYBP) to the Pleistocene (1.5 MYBP) and provide insights for interpreting biogeographic and paleontol ogical data. Two groups of fossil lizards occurring in Europe have been referred to the Anguidae. The extinct Glyptosaurinae dates to the late Cretaceous (95-75 MYBP; Gauthier, 1982), and its phylogenetic position is not well understood. Fossils in Europe from two later periods may be related to extant forms within the Anguinae. The earliest fossils from the middle Eocene (40-50 MYBP) are either grouped with the modern Old World anguines (Meszoely and Haubold, 1975) or considered the sister lineage to all modern anguines (Gauthier, 1982). If these fossils are grouped with a modern Old World anguine lineage (Fig. 3), they place modern anguine lineages in Europe during the E ocene prior to the Oligocene drying of the Turgai Sea.

Our phylogenetic tree and interpretation of historical events suggest rapid separation of the western Eurasian anguine lineages from eastern Eurasian and North American anguines by the Tibetan uplift during
the Oligocene-Miocene. Within the Anguinae, fossils that are assigned to the Anguis-Ophisaurus apodus clade appear in Europe first in the late Oligocene (25-30 MYBP; Gauthier, 1982). This date coincides with the connection of Europe with Asia-America following drying of the Turgai Sea (Briggs, 1987). At this time a continuous land connection was available from Europe through Asia to North America. At this sametime (30 MYBP), the first phase of uplifting of the Tibetan Plateau was coming to a close with the plateau reaching an average elevation of 3000 m (Dewey et al., 1989). The second phase of uplifting maintained this elevation of 3000 m until 10 MYBP when faulting and uplifting of the Tibetan Plateau exceeded erosion (Shackleton and Chang, 1988), resulting in a third phase of uplifting to produce an average elevation of 5000 m (Dewey et al., 1989). By the late Oligocene to early Miocene, taxa in Europe and western Asia probably were isolated from taxa in eastern Asia and North America after sharing a brief connection immediately following the drying of the Turgai Sea.

The ancestral anguine lineage may have entered Europe from North America in the Eocene prior to formation of the North Atlantic and then expanded its distribution southward to North Africa and eastward into West Asia. The drying of the Turgai Sea in the Oligocene could have permitted taxa to migrate to eastern Asia and then back to North America via the Bering land bridge. The Oligocene-to-Miocene uplifting of Tibet would have formed a barrier to migration between eastern and western Eurasia shortly after the drying of the Turgai Sea. This scenario predicts that North African, European, and West Asian anguines would not necessarily form a monophyletic group but that North American anguines should be a monophyletic group. This scenario is compatible with both our phylogenetic hypothesis and the hypothesis that E ocene European fossils of the Anguinae are affiliated with either the modern North African lineage or the European and West Asian lineage (Meszoely and Haubold, 1975). The European fossil anguines of the late Oligocene-Miocene are assigned to the Anguis-Ophisaurus apodus clade (Gauthier, 1982). The first fossil appearance of Ophisaurus in North America occurs in the late M iocene of Saskatchewan (Holman, 1970). This observation is consistent with a post-Oligocene arrival of Ophisaurus in North America by dispersal from the Bering Iand bridge across Canada to its current distribution in southeastern North America.

In an alternative scenario, the Anguinae arose in North America and spread to eastern Asia via the Bering land bridge prior to the Oligocene drying of the Turgai Sea. When the Turgai Sea was dry, western Eurasia would have been invaded and quickly blocked to the east by the uplifting of Tibet (Oligocene to Miocene). This scenario predicts that North American anguines would not necessarily form a monophyletic
group but that North African, European, and West Asian anguines would. Phylogenetic predictions of this second scenario are not compatible with our most parsimonious tree. This second scenario also requires that Eocene European fossil anguines are phylogenetically outside a group containing Oligocene-Miocene European fossil anguines and all extant anguines from North Africa, Europe, and West Asia. A tree showing the North African and western Eurasian anguines forming a monophyletic group as predicted by the second scenario was not statistically rejected but was costly (seven extra steps required). Both hypotheses suggest that the drying of the Turgai Sea and the formation of Tibet were instrumental in shaping current biogeographic patterns.

DNA SequenceDivergence and theF ossil Record
Rate of molecular evolution for the mitochondrial DNA region sequenced here has been estimated for agamid lizards, bufonid frogs, and fishes (Bermingham et al., 1997; Macey et al., 1998a,b) as $0.65-0.69 \%$ change per lineage per million years. If this rate is approximately correct for anguid, anniellid, and xenosaurid lizards, then taxa sampled here are extraordinarily old. Relatively few divergences are under 10 million years (between Anniella species; between Sauresia and Wetmorena; between Abronia and Mesaspis; among Elgaria species; between Anguis and Ophisaurus apodus; and between Ophisaurus attenuatus and O. ventralis; Table 4). Of these taxa, only divergences among Elgaria species are less than 7 million years. After 10 million years, mitochondrial DNA is expected to saturate (M oritz et al., 1987); hence, a linear relationship of nucl eotide substitutions and time is not antici pated.

The branching event separating Ophisaurus apodus and Anguis appears to be approximately 9 MYBP, which may be an underestimate if some substitutional saturation has occurred. Thefossil record for these taxa is difficult to interpret because small Ophisaurus apo-dus-like specimens can be confused with Anguis-like specimens (Gauthier, 1982). Note that the divergence between these taxa and Ophisaurus koellikeri of Morocco is greater than 10 MYBP.

The fossil record is consistent with our interpretation of very old divergences among the major lineages (Gauthier, 1982). F ossils of New and Old World xenosaurids and anguids are known from the late Cretaceous (95-75 MYBP). The taxa Anniellidae, Anguinae, Diploglossinae, and Gerrhonotinae all are known from at least the early E ocene (50-55 MYBP).

Within Elgaria, the molecular data estimate the divergence between the northern E. coerulea and the remaining taxa at 6.6 MYBP. The Gulf of California formed 5-6 MYBP (reviewed in Murphy, 1983) and could have separated E . kingii from the clade of western species (E. pauci carinata, E. multi carinata, and E. panamintina); the DNA sequences estimate 4.0 MYBP,
which is slightly less than expected. Alternatively, the formation of the Mojave Desert could have separated E. kingii from the western clade. Continued aridization of the Baja California peninsula (3.4 MYBP) could have separated E. paucicarinata from E. multicarinata and E. panamintina, and a Pleistocene (1.5 MYBP) divergence for E . multicarinata and E . panamintina may have occurred across the Owens Valley of California. This result is consistent with our molecular calibration and with current hypotheses of Pliocene drying of western North America that continued into the Pleistocene (Axel rod, 1979).

Taxonomic Recommendations

Two considerations should be addressed when making taxonomic changes to preserve monophyly. First, is the evidence for nonmonophyly of currently recognized groups statistically robust and second, how disruptive is the proposed taxonomic change?
Among higher taxa, the overall most parsimonious trees from analysis of DNA sequence data depict as monophyletic groups the Anniellidae, Anguidae, Diploglossinae, Gerrhonotinae, and Anguinae but not the Xenosauridae (Xenosaurus and Shinisaurus). The lizard family Xenosauridae as currently recognized contains two subfamilies, the Shinisaurinae and Xenosaurinae. Because monophyly of the Xenosauridae (Shinisaurus and Xenosaurus) is statistically rejected, we propose to recognize as separate lizard families the Shinisauridae (genus Shinisaurus) and Xenosauridae (genus Xenosaurus). This taxonomic change affects a single species, Shinisaurus crocodilurus, and therefore is not considered disruptive.

The Anniellidae, Gerrhonotinae, and Anguinae each receive statistical support as monophyletic groups from analysis of DNA sequence data. Recognition of the lizard family Anniellidae has been a topic of debate (Gauthier, 1982; Good, 1987; Keqin and Norell, 1998). The phylogenetic analyses of DNA sequences and allozymic data place the Anniellidae, which includes only two species, as the sister taxon to the Anguidae, and monophyly of the Anguidae receives statistical support from analysis of allozymic data. The Anniellidae appears not to be the sister taxon to either Anguis or the anguines as previously proposed (Gauthier, 1982; Keqin and Norell, 1998). Because the family Anniellidae has been recognized for a long time and is currently used in popular field guides as well as the scientific literature, placing this taxon in the Anguidae would be disruptive. Hence, we recommend continued recognition of theAnniellidae.

Statistical support was not obtained for monophyly of the Diploglossinae*, which therefore is retained as a metataxon (Estes et al., 1988; Gauthier et al., 1988) denoted with an asterisk, indicating that monophyly is neither statistically supported nor rejected (Schulte et al., 1998). The genus Diploglossus is not monophyletic
but a more detailed sampling is needed before stable taxonomic changes can be made.

Within the Anguinae, Ophisaurus is not monophyletic, and statistical support is obtained for the grouping of Ophisaurus apodus with Anguis fragilis rather than with the other species of Ophisaurus. Because old generic names exist, Hyalosaurus for O. koellikeri and Pseudopus for O. apodus, two options are presented. One option would be to change O . koellikeri from Ophisaurus to Hyal osaurus and O. apodus from Ophisaurus to Pseudopus. If these changes were made, the remaining Ophisaurus would still be considered a metataxon because monophyly of this group is supported only by a decay index of 1 and statistically is neither supported nor rejected. This change would not be disruptive unless other Ophisaurus species are found not to form a monophyletic group, thereby requiring more taxonomic changes. Alternatively, all taxa in the Anguinae could be referred to the genus Anguis, which would provide a long-lasting stable taxonomy. Because few species are involved, we favor recognition of a single genus, Anguis.

Evolution of tRNA ${ }^{\text {Cys }}$

Tremendous variation occurs among species in potential stem sizes of both D- and T-stem regions of DNA sequences encoding tRNACys (Fig. 2). Taxa basal on our phylogeny (Hedoderma, Varanus, and Shinisaurus) have zero, three or four base pairings in the D-stem (Fig. 6). Xenosaurus and Anniella demonstrate enlarged stems of five base pairings. All other taxa except two groups have the normal four base pairings or a slightly reduced stem of three base pairings. An enlarged stem of six pairings occurs in Ophisaurus koellikeri, and variation occurs in Elgaria for either three base pairings or one base pairing. Because E. kingii and E. paucicarinata have a single D-stem pair and E. coerulea, E. multicarinata, and E. panamintina have three base pairings in the D-stem, an equivocal reconstruction is presented in Fig. 6. Two interpretations are possible: (1) two base pairings were lost to produce a stem of one base pairing in the ancestor of E. kingii, E. paucicarinata, E. multicarinata, and E. panamintina and then two base pairings were regained in the ancestor of E. multicarinata and E. panamintina to produce three base pairings or (2) two base pairings were lost independently in E. kingii and E. paucicarinata. Parallel del etion of a single base that destroys two base pairings in the D-stems of both E. kingii and E. paucicarinata (Figs. 1 and 2) seems more likely than reinsertion of a base in exactly the same place following its deletion, thereby favoring the second hypothesis.

Most species have enlarged T-stems (Fig. 2). The basal condition appears to be a stem size of six to eight base pairings instead of the normal five base pairings (Fig. 6). In the Anniellidae and Anguidae the ancestral condition is an enlarged stem of six base pairings.

FIG. 6. Evolution of stem regions in tRNACys as inferred from DNA sequences derived from anguid lizards and related taxa. Stem size in number of pairs is mapped on the shortest estimate of phylogeny. Light patterns represent few or no pairings and black represents a large number of pairings.

Among diploglossines, two independent losses are observed to produce normal five-base stems, and two independent gains are observed to produce enlarged seven-base stems. All tropical gerrhonotines have enlarged stems of six or seven base pairings whereas all Elgaria species have reduced stems of four base pairings. The same situation is observed among the Anguinae; species exhibit either enlarged stems of seven pairings or reduced stems of four pairings.

The loss in Elgaria of base pairings in D-stems of tRNA ${ }^{\text {Cys }}$ differs from the eight independent losses previously observed among lepidosaurian reptiles (Macey et al., 1997b). In Elgaria, a single base pairing is observed in the D-stem of tRNA ${ }^{\text {Cys }}$ whereas no such base pairings remained in the eight other independent losses. Transfer RNAs with single base pairs in the D-stem are thought to form a tertiary structure different from tRNAs with D-arm replacement loops (Steinberg et al., 1994). Because the lineage ancestral to Elgaria is associated with D-stem size reduction from four to three base pairings, a gradual process of deletion is implicated in the formation of the unusual tRNACys observed in E. kingii and E. paucicarinata. In addition, no repeats that would indicate slippage events during replication (Macey et al., 1997b) are observed.

The large T-stems are unique. Mitochondrial tRNAs have been shown to lose stem regions, but this is the first observation of massive stem increase. In addition, after the T-stem increased in size, decreases in size are observed to occur in parallel. Interestingly, return to a smaller T-stem is associated with reduction of
the D-stem in the Elgaria species. Size changes in the two stems could be related, but a more detailed sampling of taxa should be used before any major conclusions are made about possible correlated evolution of these stems in tRNA Cys among anguid, anniellid, xenosaurid, and shinisaurid lizards.

ACKNO WLEDGMENTS

We are grateful to the following people for collecting specimens or providing tissue samples: Natalia B. Ananjeva, Stephen D. Busack, J ohn E. Cadle, J onathan Campbell, David C. Cannatella, Paul Chippindale, Carla Cicero, David M. Darda, Paul Elias, David A. Good, S. Blair Hedges, Robin Lawson, Robert L. Seib, Stanley K. Sessions, H. Bradley Shaffer, Richard Thomas, and David B. Wake. Kraig Adler provided helpful comments on an earlier version of the manuscript. This work was supported by grants from the National Science Foundation (predoctoral fellowship toJ.R.M.; DEB-9318642 to J .B. Losos, K. de Queiroz, and A.L.; DEB-9726064 toA.L., J.R.M., and T.J.P.), National Geographic Society (4110-89 and 4872-93 to T.J .P. and J.R.M.), Russian Foundation for Basic Research (N97-0450093 to Natalia B. Ananjeva), and the California Academy of Sciences.

APPENDIX 1

Alternative hypotheses used in Wilcoxon signedranks tests (Felsenstein, 1985; Templeton, 1983). Lengths of trees and consistency indices (CI) (Swofford, 1998) are given in parentheses. Numbers refer to the following taxa: (1) Hel oderma suspectum, (2) Varanus griseus, (3) Shinisaurus crocodilurus, (4) Xenosaurus grandis, (5) Anniella geronimensis, (6) Anniella pul-
chra, (7) Celestus enneagrammus, (8) Diplogl ossus bilobatus, (9) Diploglossus plei, (10) Ophiodes striatus, (11) Sauresia agasepsoides, (12) Wetmorena haetiana, (13) Barisia imbricata, (14) Gerrhonotus liocephalus, (15) Abronia oaxacae (16) Mesaspis moreleti, (17) EIgaria coerulea, (18) Elgaria kingii, (19) Elgaria paucicarinata, (20) Elgaria multi carinata, (21) Elgaria panamintina, (22) Ophisaurus koel likeri, (23) Anguis fragilis, (24) Ophisaurus apodus, (25) Ophisaurus harti, (26) Ophisaurus attenuatus, and (27) Ophisaurus ventralis.

The two overall most parsimonious trees using the DNA sequence data (length 5452 steps and Cl of 0.394): A1. (1, (2, (3, (4, ((5, 6), (((7, 8), ((9, 10), (11, 12))), ((((13, 14), (15, 16)), (17, (18, (19, (20, 21))))), (22, ((23, 24), (25, $(26,27)))))))))$). A2. (1, (2, (3, (4, ((5, 6), (((7, 8), ((9, 10), $(11,12))),(((13,(14,(15,16))),(17,(18,(19,(20,21)))))$, (22, ((23, 24), (25, (26, 27))))))))))).

The most parsimonious trees derived by constraining Shinisaurus and Xenosaurus to form a monophyletic group using the DNA sequence data (length of 5477 steps and a CI of 0.392): B1. (1, (2, ($(3,4),((5,6),(((7,8)$, ((9, 10)), (11, 12))), (((13, (14, (15, 16))), (17, (18, (19, (20, $21))))$), (((22, 25), (23, 24)), (26, 27)))))))). B2. (1, (2, ((3, 4), ((5, 6), (((7, 8), ((9, 10), (11, 12))), ((($(13,14),(15,16))$, (17, (18, (19, (20, 21))))), (((22, 25), (23, 24)), (26, $27))))$))). B3. (1, (2, ((3, 4), ((5, 6), (((7, 8), ((9, 10), (11, 12))), ((((13, 14), (15, 16)), (17, (18, (19, (20, 21))))), (22, ((23, 24), (25, (26, 27)))))))))). B4. (1, (2, ((3, 4), ((5, 6), (((7, 8), ((9, 10), (11, 12))), (((13, (14, (15, 16)))), (17, (18, (19, (20, 21))))), (22, ((23, 24), (25, (26, 27)))))))))).
The most parsimonious trees derived by constraining Anniella not to form a monophyletic group using the DNA sequence data (length of 5503 steps and a Cl of $0.390):$ C1. ($1,(2,(3,(4,((5,((7,8),((9,10),(11,12))$, (((13, (14, (15, 16))), (17, (18, (19, (20, 21))))), (((22, 25), (23, 24)), (26, 27)))))), 6))))). C2. (1, (2, (3, (4, ((5, (6, (7, 8))), (((9, 10), (11, 12)), (((13, (14, (15, 16))), (17, (18, (19, (20, 21))))), (((22, 25), (23, 24)), (26, 27))))))))).

The most parsimonious tree derived by constraining the Anguidae not to form a monophyletic group using the allozymic data of Good (1987; length of 85 steps and a CI of 0.824): D1. (Xenosaurus, ((Anniella, (Ophisaurus, Elgaria)), Celestus)).

The most parsimonious tree derived by constraining the Diploglossinae not to form a monophyletic group using the DNA sequence data (length of 5456 steps and a CI of 0.394$)$: E1. (1 , (2, (3, (4, ($(5,6),((7,8),(((9,10)$, (11, 12)), (((13, (14, (15, 16))), (17, (18, (19, (20, 21))))), $(((22,25),(23,24)),(26,27)))))))))$).
The most parsimonious trees derived by constraining the Gerrhonotinae not to form a monophyletic group using the DNA sequence data (length of 5474 steps and a CI of 0.392): F1. (1, (2, (3, (4, ((5, 6), (($(7,8)$) ($(9,10)$, (11, 12))), (((13, (14, (15, 16))), (22, ((23, 24), (25, (26, 27))))), (17, (18, (19, (20, 21)))))))))). F2. (1, (2, (3, (4, ((5, $6),(((7,8),((9,10),(11,12))),((13,(14,(15,16))),((17$, (18, (19, (20, 21)))), (22, ((23, 24), (25, (26, 27)))))))))))).

The most parsimonious trees derived by constraining the Anguinae not to form a monophyletic group using the DNA sequence data (length of 5492 steps and a Cl of 0.391): G1. (1, (2, (3, (4, ((()((5, 6), (7, 8)), ((9, 10)), (11, 12))), ((13, (14, (15, 16))), (17, (18, (19, (20, 21)))))), ((22, $25),(26,27))),(23,24)))))$. G2. (1, (2, (3, (4, (((5, 6), (7, 8)), (((9, 10)), (11, 12)), ((((13, (14, (15, 16))), (17, (18, (19, $(20,21))))$), ((22, 25), (26, 27))), (23, 24)))))))). G3. (1, (2, (3, (4, ((()((5, 6), (7, 8)), ((9, 10)), (11, 12))), ((13, (14, (15, 16))), (17, (18, (19, (20, 21)))))), ((22, (23, 24)), (26, 27))), 25)))) .

The most parsimonious tree derived by constraining Anniella to be the sister taxon to the Anguinae using the DNA sequence data (length of 5467 steps and a Cl of 0.393): H1. (1, (2, (3, (4, ((()(5, 6)), $22,((23,24),(25$, $(26,27))))$), ((13, (14, (15, 16))), (17, (18, (19, (20, 21)))))), $((9,10),(11,12))),(7,8)))))$).

The most parsimonious trees derived by constraining Anniella and Anguis to form a monophyletic group using the DNA sequence data (length of 5551 steps and a CI of 0.387$)$: I1. (1, (2, (3, (4, (((((5,6$), 23), 24),((22$, $25),(26,27))),((7,8),((9,10),(11,12)))$), ((13, (14, (15, 16))), (17, (18, (19, (20, 21)))))))))). 12. (1, (2, (3, (4, (((((5, $6), 23), 24),((22,25),(26,27))),((7,8),((9,10),(11,12))))$, (((13, 14), (15, 16)), (17, (18, (19, (20,21)))))))))).

The most parsimonious tree derived by constraining Ophiodes and Ophisaurus koel likeri to form a monophyletic group using the DNA sequence data (length of 5616 steps and a CI of 0.382): J 1. (1, (2, (3, (4, ((()(5, 6)), $(7,8)),(9,(11,12))),((10,22),((23,24),(25,(26,27)))))$, (((13, 14), (15, 16)), (17, (18, (19, (20, 21)))))))))).

The most parsimonious trees derived by constraining West Indian taxa, Diploglossus plei, Sauresia, and Wetmorena to form a monophyletic group using the DNA sequence data (length of 5503 steps and a Cl of $0.390)$: K 1. (1, (2, (3, (4, ((5, 6), (((7, 8), ((9, (11, 12)), 10)), ((((13, 14), (15, 16)), (17, (18, (19, (20, 21))))), (22, ((23, 24), (25, (26, 27)))))))))) . K2. (1, (2, (3, (4, ((5, 6), (((7, 8), ((9, (11, 12))), 10)), (((13, (14, (15, 16))), (17, (18, (19, (20, $21)))$),$(22,((23,24),(25,(26,27))))))))))$.

The most parsimonious trees derived by constraining Ophisaurus koellikeri, Anguis, and O. apodus to form a monophyletic group using the DNA sequence data (length of 5459 steps and a CI of 0.393): L1. (1, (2, (3, (4, $((5,6),(((7,8),((9,10),(11,12))),(((13,(14,(15,16)))$, (17, (18, (19, (20, 21))))), (((22, (23, 24)), 25), (26, 27))))))))). L2. (1, (2, (3, (4, ((5, 6), (((7, 8), ((9, 10)), (11, 12))), (((13, (14, (15, 16))), (17, (18, (19, (20, 21))))), ((22, $(23,24)),(25,(26,27)))))))))$. L3. (1, (2, (3, (4, ((5, 6), ((7, 8), ((9, 10), (11, 12))), ((((13, 14), (15, 16))), (17, (18, (19, $(20,21))))$), ((22, (23, 24)), (25, (26, 27)))))))))).
The most parsimonious tree derived by constraining Anguis and Ophisaurus apodus not to form a monophyletic group using the DNA sequence data (length of 5476 steps and a CI of 0.392): M1. (1, (2, (3, (4, ($(5,6)$, (((7, 8), ((9, 10), (11, 12))), ((((13, 14), (15, 16)), (17, (18, (19, (20, 21))))), (((22, (25, (26, 27))), 23), 24)))))))).

The most parsimonious tree derived by constraining Elgaria kingii and E. panamintina to form a monophyletic sister group to E. paucicarinata using the DNA sequence data (length of 5478 steps and a CI of 0.392): N 1. (1, (2, (3, (4, ((5, 6), (((7, 8), ((9, 10), (11, 12))), ((((13, 14), (15, 16)), (17, (((18, 21), 19), 20))), (22, ((23, 24), (25, $(26,27))$)) $)$) $)$) $)$).

The most parsimonious tree derived by constraining Elgaria multicarinata and E. panamintina to form a monophyletic sister group toE. paucicarinata using the allozymic data of Good (1988; length of 84 steps and a Cl of 0.774): O1. (Abronia/ Barisia/ Mesaspis, (EIgaria coerulea, (((Elgaria multicarinata, Elgaria panamintina), Elgaria paucicarinata), Elgaria kingii)))).

REFERENCES

Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H. L., Coulson, A. R., Drouin, J., E peron, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J . H., Staden, R., and Young, I. G. (1981). Sequence and organization of the human mitochondrial genome. Nature 290: 457-465.
Axelrod, D. I. (1979). Age and origin of Sonoran Desert vegetation. Occ. Pap. Calif. Acad. Sci. 132: 1-74.
Bermingham, E., McCafferty, S. S., and Martin, A. P. (1997). Fish biogeography and molecular clocks: Perspectives from the Panamanian Isthmus. In "M olecular Systematics of Fishes" (T. D. K ocher and C. A. Stepien, Eds.), pp. 113-128. Academic Press, San Diego.
Bremer, K. (1994). Branch support and tree stability. Cladistics 10: 295-304.
Briggs, J. C. (1987). "Biogeography and Plate Tectonics," Elsevier, Amsterdam.
Buth, D. G. (1984). The application of electrophoretic data in systematic studies. Annu. Rev. Ecol. Syst. 15: 501-522.
Dewey, J. F., Cande, S., and Pitman, W. C., III. (1989). Tectonic evolution of the India/Eurasia collision zone. Ecol ogae Geol. Helv. 82: 717-734.
Dirheimer, G., Keith, G., Dumas, P., and Westhof, E. (1995). Primary, secondary, and tertiary structures of tRNAs. In "tRNA: Structure, Biosynthesis, and Function" (D. Söll and U. RajBhandary, Eds.), pp. 93-126. Am. Soc. Microbiol. Press, Washington, DC.
Estes, R., de Queiroz, K., and Gauthier, J. A. (1988). Phylogenetic relationships within squamata. In "Phylogenetic Relationships of the Lizard Families, Essays Commemorating Charles L. Camp" (R. Estes and G. Pregill, Eds.), pp. 119-281. Stanford Univ. Press. Palo Alto, CA.
Felsenstein, J. (1985). Confidence limits on phylogenies with a molecular clock. Syst. Zool. 34: 152-161.
Gauthier, J . A. (1982). F ossil xenosaurid and anguid lizards from the early Eocene Wasatch Formation, southeast Wyoming, and a revision of theAnguioidea. Contr. Geol. Univ. Wyoming 21: 7-54.
Gauthier, J. A., Estes, R., and de Queiroz, K. (1988). A phylogenetic analysis of Lepidosauromorpha. In "Phylogenetic Relationships of the Lizard Families, Essays Commemorating Charles L. Camp" (R. Estes and G. Pregill, Eds.), pp. 15-98. Stanford Univ. Press, Palo Alto, CA.
Good, D. A. (1987). An allozyme analysis of anguid subfamilial relationships (Lacertilia: Anguidae). Copeia 1987: 696-701.
Good, D. A. (1988). Allozyme variation and phylogenetic relationships among the species of EIgaria (Squamata: Anguidae). Herpetol ogica 44: 154-162.

Holman, A. J. (1970). Herpetofauna of the Wood Mountain formation (Upper Miocene) of Saskatchewan. Can. J. Earth Sci. 7: 13171325.

Keqin, G., and Norell, M. A. (1998). Taxonomic revision of Carusia (Reptilia: Squamata) from the Late Cretaceous of the Gobi Desert and phylogenetic relationships of anguimorphan lizards. Am. Mus. Novit. no. 3230: 51 pp. New York.
Kumazawa, Y., and Nishida, M. (1993). Sequence evolution of mitochondrial tRNA genes and deep-branch animal phylogenetics. J. Mol. Evol. 37: 380-398.
Kumazawa, Y., and Nishida, M. (1995). Variations in mitochondrial tRNA gene organization of reptiles as phylogenetic markers. Mol. Biol. Evol. 12: 759-772.
Kumazawa, Y., Ota, H., Nishida, M., and Ozawa, T. (1996). Gene rearrangements in snake mitochondrial genomes: Highly concerted evolution of control-region-like sequences duplicated and inserted into a tRNA gene cluster. Mol. Biol. Evol. 13: 1242-1254.
Larson, A. (1998). The comparison of morphological and molecular data in phylogenetic systematics. In "Molecular Approaches to Ecology and Evolution" (R. DeSalle and B. Schierwater, Eds.), pp. 275-296. Birkhäuser, Basel.
Mabee, P. M., and Humphries, J . (1993). Coding polymorphic data: Examples from allozymes and ontogeny. Syst. Biol. 42: 166-181.
Macey, J. R., Larson, A., Ananjeva, N. B., Fang, Z., and Papenfuss, T. J. (1997a). Two novel gene orders and the role of light-strand replication in rearrangement of the vertebrate mitochondrial genome. Mol. Biol. Evol. 14: 91-104.
Macey, J. R., Larson, A., Ananjeva, N. B., and Papenfuss, T. J. (1997b). Replication slippage may cause parallel evolution in the secondary structures of mitochondrial transfer RNAs. Mol. Biol. Evol. 14: 30-39.
Macey, J. R., Larson, A., Ananjeva, N. B., and Papenfuss, T. J . (1997c). Evolutionary shifts in three major structural features of the mitochondrial genome among iguanian lizards. J. Mol. Evol. 44: 660-674.
Macey, J. R., Schulte, J. A., II, Ananjeva, N. B., Larson, A., RastegarPouyani, N., Shammakov, S. M., and Papenfuss, T. J. (1998a). Phylogenetic relationships among agamid lizards of the Laudakia caucasia species group: Testing hypotheses of biogeographic fragmentation and an area cladogram for the Iranian Plateau. Mol. Phylogenet. Evol. 10: 118-131.
Macey, J . R., Schulte, J . A., II, Larson, A., Fang, Z., Wang, Y., Tuniyev, B. S., and Papenfuss, T. J . (1998b). Phylogenetic relationships of toads in the Bufo bufo species group from the eastern escarpment of the Tibetan Plateau: A case of vicariance and dispersal. Mol. Phylogenet. Evol. 9: 80-87.
Macey, J. R., and Verma, A. (1997). Homology in phylogenetic analysis: Alignment of transfer RNA genes and the phylogenetic position of snakes. Mol. Phylogenet. Evol. 7: 272-279.
Maddison, W. P., and Maddison, D. R. (1992). "MacClade, Analysis of Phylogeny and Character Evolution, Version 3.0,"Sinauer, Sunderland, Mass.
Maniatis, T., Fritsch, E. F., and Sambrook, J. (1982). "Molecular Cloning: A Laboratory Manual," Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
Meszoely, C., and Haubold, H. (1975). The status of the Middle E ocene Geiseltal limbless anguid lizards. Copeia 1975: 36-43.
Moritz, C., Dowling, T. E., and Brown, W. M. (1987). Evolution of animal mitochondrial DNA: Relevance for population biology and systematics. Annu. Rev. Ecol. Syst. 18: 269-292.
Murphy, R. W. (1983). Paleobiogeographic and genetic differentiation of the Baja California herpetofauna. Occ. Pap. Calif. Acad. Sci. 137: 1-48.
Pamilo, P., and Nei, M. (1988). Relationships between gene trees and species trees. Mol. Biol. Evol. 5: 568-583.

Roe, B. A., Ma, D.-P., Wilson, R. K., and Wong, J . F.-H. (1985). The complete sequence of the Xenopus Iaevis mitochondrial genome. J . Biol. Chem. 260: 9759-9774.
Schulte, J . A., II, Macey, J . R., Larson, A., and Papenfuss, T. J . (1998). Molecular tests of phylogenetic taxonomies: A general procedure and example using four subfamilies of the lizard family I guanidae. Mol. Phylogenet. Evol., 10:367-376.
Schwenk, K. (1988). Comparative morphology of the lepidosaur tongue and its relevance to squamate phylogeny. In "Phylogenetic Relationships of the Lizard Families, Essays Commemorating Charles L. Camp" (R. Estes and G. Pregill, Eds.), pp. 569-598. Stanford Univ. Press, PaloAlto, CA.
Seutin, G., Lang, B. F., Mindell, D. P., and Morais, R. (1994). Evolution of the WANCY region in amniote mitochondrial DNA. Mol. Biol. Evol. 11: 329-340
Shackleton, R. M., and Chang, C. (1988). Cenozoic uplift and deforma-
tion of the Tibetan Plateau: The geomorphol ogical evidence. Phil. Trans. R. Soc. Lond. A 327: 365-377.
Steinberg, S., Gautheret, D., and Cedergren, R. (1994). Fitting the structurally diverse animal mitochondrial tRNAs ${ }^{\text {Ser }}$ to common three-dimensional constraints. J. M ol. Biol. 236: 982-989.
Swofford, D. L. (1998). "PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods), Beta Version 4.0b1,"Sinauer, Sunderland, Mass.
Templeton, A. R. (1983). Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the evolution of humans and the apes. Evolution 37: 221-244.
Zhao, E.-M., and Adler, K. (1993). Herpetology of China. Soc. Study Amphib. Reptiles Contr. Herpetol. 10: 1-522.
Zhang, D.-X., and Hewitt, G. M. (1996). Nuclear integrations: Challenges for mitochondrial DNA markers. Trends Ecol. Evol. 11: 247-251.

[^0]: ${ }^{1}$ To whom correspondence should be addressed. Fax: (314) 9354432. E-mail: macey@biology.wustl.edu.

[^1]: a Primers are designated by their 3^{\prime} ends which correspond to the position in the human mitochondrial genome (Anderson et al., 1981) by convention. H and L designate heavy-strand and light-strand primers, respectively.
 ${ }^{\mathrm{b}}$ P ositions with mixed bases are labeled with the standard one-letter code: $\mathrm{R}=\mathrm{G}$ or A .

[^2]: a SeeAppendix 1 for phylogenetic topol ogies used in tests.
 ${ }^{\mathrm{b}}$ Number of characters differing in minimum numbers of changes on paired topol ogies.
 ${ }^{\text {c }}$ Normal approximation for Wilcoxon signed-ranks test.
 ${ }^{d}$ Asterisk indicate a significant difference between the overall shortest tree and an alternative tree. One asterisk denotes significance using the one-tailed probability only and two asterisks denote significance using the two-tailed probability for the Wilcoxon signed-ranks test. One-tailed probabilities are shown and two-tailed probabilities are double these values. A significant result means that the alternative hypothesis as stated can be rejected.
 e Tests using allozymic data; all other tests are done on DNA sequence data.

